Numeracy Across the Curriculum

ART EDESIGN

Symmetry

A line of symmetry is a line which divides a picture into two parts, each of which is the mirror image of the other. Pictures may have more than one line of symmetry.

Numeracy Across the Curriculum

ART \& DESIGN

Symmetry

The number of positions a figure can be rotated to, without bringing in any changes to the way it looks originally, is called its order of rotational symmetry.

Rotational Symmetry Order 3

Rotational Symmetry Order 9

Rotational Symmetry Order 4

Numeracy Across the Curriculum

 ART GDESIGN

 ART GDESIGN}

Ratio

A ratio tells you how much you have of one part compared to another part.
It is useful if you are trying to mix paints accurately and consistently.

An example
You can make different colours of paint by mixing red, blue and yellow in different proportions.

For example, you can make green by mixing 1 part blue to 1 part yellow.

To make purple, you mix 3 parts red to 7 parts blue.
How much of each colour do you need to make 20 litres of purple paint?
litres of red and \qquad litres of blue

Numeracy Across the Curriculum

ART \& DESIGN

Ratio

Many artists and architects have proportioned their works to approximate the Golden Ratio believing this proportion to be aesthetically pleasing. This is sometimes given in the form of the Golden Rectangle in which the ratio of the longer side to the shorter side is the golden ratio.

The golden ratio is given by the Greek letter phi (φ) where:

$$
\varphi=\underline{1+\sqrt{5}}=1.6180339887 \ldots
$$

2

Numeracy Across the Curriculum

ART \& DESIGN

Perspective, Enlargement and Scale Factor

Perspective in art and design is an approximate representation, on a flat surface, of an image as it is seen by the eye.

Lines radiating from a vanishing point are used to draw in detail on the picture.

In maths we use a centre of englargement $[(8,0)$ in this case] and a scale factor [2 in this case] to carry out englargements.

Can you see the similarities and differences in the processes involved?

Numeracy Across the Curriculum

ART EDESIGN

Tessellations

Tessellation is the process of creating a two-dimensional plane using the repetition of a geometric shape with no overlaps and no gaps.

Escher was famous for creating detailed drawings using different tessellations.

Numeracy Across the Curriculum ART \& DESIGN

Cubism

George Braque

Violin and Candlestick
1910

Cubism is an early-20th-century avant-garde art movement. In Cubist artwork, objects are analysed, broken up and reassembled in an abstracted forminstead of depicting objects from one viewpoint, the artist depicts the subject from a multitude of viewpoints to represent the subject in a greater context.

In Maths we also draw objects from different viewpoints using plans, elevations or isometric drawing. These are often compared on the same page in order to give a full understanding of what the 3D shape looks like.

How do these mathematical techniques compare with the artistic ones used in Cubism?

Numeracy Across the Curriculum ART \& DESIGN

Constructions

Construction methods in art are organised techniques, systems, logical practices, planning and design in the creation of structure.

There is also a branch of art called Constructivism that originated in Russia in 1919 and saw art as a practice for social purposes.

In geometry constructions refer to the drawing of various shapes using only a compass and straightedge.

No measurement of lengths or angles is allowed.

Typical constructions include drawing the perpendicular bisector of a line, creating a 60° angle and bisecting an angle (see diagram above). Could you use geometrical constructions in art lessons to support your designs? What would be the advantages and disadvantages of doing this?

Numeracy Across the Curriculum

ENGLISH

Using mathematical vocabulary correctly

It is important to make sure you can spell mathematical words and use them in the correct context. Here are some of the mathematical words that people often spell incorrectly.

Numeracy Across the Curriculum

ENGLISH

Explaining and Justifying Methods and Conclusions

It is important to be able to explain your mathematical thinking to others. This not only helps others understand how you have worked things out, but improves your understanding of what you have done. Look at the example below. The highlighted words are good ones to use in mathematical arguments.

Find the value of the expression $\frac{2 y+8}{2}$ when $y=7$

If y is equal to 7 , then $2 y$ must be equal to 14 . This is because $2 y$ means 2 multiplied by y and 2 multiplied by 7 is
14. Therefore $2 y$ plus 8 will equal 14 plus 8 which is 22 . It follows that $2 y$ plus 8 divided by 2 will therefore be 11 , since 22 divided by 2 is 11 .

Numeracy Across the Curriculum

ENGLISH

Interpreting and Discussing Results

An important branch of mathematics is statistics, which involves the collection, presentation and evaluation of data. You can use your skills in English to clearly interpret and discuss results you get from collecting data in your maths lessons.

GCSE results, c/f 2010, 2011

Numeracy Across the Curriculum

DESIGN \& TECHNOLOGY (Food)

Reading Scales

You need to work out how much each division is worth when reading scales.

Using the outside scale (g)...
There are 10 divisions between 0 and 50

Each division is worth

$$
50 \div 10=5
$$

So the scale reads $\underline{70 \mathrm{~g}}$

Using the inside scale (oz)... There are 4 divisions between 0 and 1
Each division is worth

$$
1 \div 4=0.25
$$

So the scale reads 2.50 z

Numeracy Across the Curriculum

DESIGN \& TECHNOLOGY (Food)

Proportion

You use proportion with recipes in order to work out how much of each ingredient you need to serve a different number of people from the number given in the recipe.

Flapjacks

(Serves: 10)
120 g butter
100 g dark brown soft sugar
4 tablespoons golden syrup
250 g rolled oats
40 g sultanas or raisins

How much of each ingredient would you need to serve 25 people?

First work out how much you need to serve 1 person, then multiply it by 25

This recipe is for 10 people.
To find out how much of each ingredient you need for one person, just divide by 10 .

For 25 people:
Butter $=120 \div 10 \times 25$
$=300 \mathrm{~g}$
Sugar $=100 \div 10 \times 25$
$=250 g$
Syrup $=4 \div 10 \times 25$
$=10$ tablespoons
Oats $=250 \div 10 \times 25$
$=625 \mathrm{~g}$ etc.

Numeracy Across the Curriculum

DESIGN \& TECHNOLOGY (Food)

Ratio

Sometimes recipes are given in the form of ratios. This allows you to make as much or as little as you want, as long as the ingredients stay in the same ratio to one another.

Pancakes

For every 100 g flour, use 2 eggs and 300 ml milk
The ratio of flour (g) to eggs to milk (ml) is

$$
100: 2: 300
$$

So to make double the quantity of pancakes, we just double the amount of each ingredient

$$
200: 4 \text { : } 600
$$

That's 200 g flour, 4 eggs and 600 ml of milk

Numeracy Across the Curriculum

DESIGN \& TECHNOLOGY (resistantmaterials)

Technical drawings of 3D designs

Technical drawing is an important skill in Design and Technology. Your working drawings should include all the details needed to make your design. In mathematics you will also need to produce accurate drawings which show the exact details of 3D shapes using 2D diagrams.

In D\&T, orthographic projection is used to show a 3D object using a front view, a side view and a plan.
Orthographic projection may be done using first angle projection or third angle projection.

Plan view

Front elevation

Side elevation

In maths we use the same method to show 3D shapes - the views are described as plan view, front elevation and side elevation. An arrow on the 3D image shows which direction is the front.

Numeracy Across the Curriculum
 DESIGN \& TECHNOLOGY (SYSTEMSANDCONTROL)

Ratio

Ratio is how much you have of one thing compared to another.

For pulley systems

Velocity ratio $=$ diameter of driven pulley diameter of driver pulley

For gears
Gear ratio = number of teeth on driven gear number of teeth on driver gear

In D\&T the main ratios you use are the velocity ratio in levers and pulley systems and the gear ratio when using gears. When you use ratios in D\&T they are normally in the form of a calculation involving division.

In maths we also use ratios to compare quantities.
If there are 15 screws and 12 bolts in a bag, we would say that the ratio of screws to bolts is

15: 12
which can be simplified to

$$
5: 4
$$

We also use ratios to share amounts. For example, share a mass of 500 kg in the ratio $2: 3$.

Total number of parts $=2+3=5$

$$
\begin{gathered}
200 \div 5=40 \\
2 \times 40=80 \text { and } 3 \times 40=120 \\
80 \mathrm{~kg}: 120 \mathrm{~kg}
\end{gathered}
$$

Numeracy Across the Curriculum DESIGN \& TECHNOLOGY (ELECTRONIGS)

Percentages

Percentages are used in many aspects of our daily lives.
One example in D\&T when you may come across them is when dealing with resistors.

The first three bands on a resistor tell you the resistance.
In this case yellow then violet then red means
Resistance $=47 \times 100=4700$ ohms $=4.7$ kilo-ohms

The fourth band tells you the tolerance i.e. what accuracy the resistance can be guaranteed to. A red band denotes a tolerance of 2%, gold a tolerance of 5% and silver a tolerance of 10%.

In this case the silver band denotes a tolerance of 10%, this means the actual resistance could be 10\% higher or lower than the value given.

To find 10% of a number we divide by 100 (to find 1%) and then multiply by 10 .

$$
4.7 \div 100 \times 10=0.47
$$

So the possible range of the resistance is,
$4.7-0.47 \mathrm{k} \Omega \leq$ resistance $\leq 4.7+0.47 \mathrm{k} \Omega$
$4.23 \mathrm{k} \Omega \leq$ resistance $\leq 5.17 \mathrm{k} \Omega$

Numeracy Across the Curriculum

DESIGN \& TECHNOLOGY (GRAPHCS)

Isometric Drawings

In D\&T a representation of a $3 D$ solid on a $2 D$ surface is called a projection.

Isometric projection uses vertical lines and lines drawn at 30° to horizontal.

Dimensions are shown accurately and in the correct proportion. Isometric projection distorts shapes to keep all upright lines vertical.

In maths isometric drawings are also used to represent 3D shapes on a 2D surface.

Isometric drawings are drawn on isometric paper which uses dots to indicate where lines should go. Upright lines are always drawn vertically, as they are in D\&T, with other lines drawn using the diagonal lines between dots.

Figure 1

Figure 3

Figure 2

Figure 4

Numeracy Across the Curriculum

DESIGN \& TECHNOLOGY (GaAPHICS)

Scale and Scale Factor

In D\&T plan drawings, showing a view from above looking down, are often used for room plans, site plans and maps. They should include compass directions, a key and a scale.

The scale on this plan drawing tells us that each centimetre on the drawing, represents 0.5 metres of the actual length of the building.
$1 \mathrm{~m}=100 \mathrm{~cm}$ therefore $0.5 \mathrm{~m}=50 \mathrm{~cm}$
So the actual building's dimensions are 50 times bigger than those on the drawing, i.e. the scale factor is 50.

From North to South the length of the building on the drawing measures 7 cm . Therefore to work out how long this is in reality we simply multiply by 50.

$$
7 \times 50=350 \mathrm{~cm}=3.5 \mathrm{~m}
$$

Numeracy Across the Curriculum

DESIGN \& TECHNOLOGY

Accuracy and Rounding

In both Design and Technology and Mathematics it is at times necessary to give measurements to a certain degree of accuracy. This is usually done by rounding to a given number of decimal places or significant figures. Sometimes you may be asked to round to the nearest whole unit.

The measuring equipment you use will determine what accuracy you can measure something to.

This length has been measured as 1286 mm to the neares $\dagger \mathrm{mm}$.

$1286 \mathrm{~mm}=128.6 \mathrm{~cm}=129 \mathrm{~cm}$ to the nearest cm
$1286 \mathrm{~mm}=1.286 \mathrm{~m}=1 \mathrm{~m}$ to the nearest m

Answers to calculations will often need rounding in order to make them easier to interpret.

Output speed $=$ Input speed \div Velocity ratio $=100 \div 3$

$$
\begin{aligned}
& =33.3333 \ldots . \mathrm{rpm} \\
& =33.3 \mathrm{rpm} \text { (to } 1 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

Numeracy Across the Curriculum

DESIGN \& TECHNOLOGY (TExTLES)

Using scale and proportion

In textiles scale and proportion are used to refer to relative measurements. Designs on paper need to be enlarged by a given scale factor whilst keeping the measurements in the same proportion to each other in order to create a pattern from which to make them.

The proportion of a pattern on a textile to the object on which it is to be used is also important. You would generally use fabric with a smaller scaled pattern for a cushion than you would for a sofa.

In maths scale and proportion are also used to define the size of one object relative to another.

Look at these two triangles. Triangle A has been enlarged by scale factor 3 to create triangle B. This means that all the side lengths of triangle B are 3 times as big as those
in triangle A. (Notice how the interior angles of the triangles stay the same)

Numeracy Across the Curriculum

DESIGN \& TECHNOLOGY

Measuring and Estimation

Being able to measure things accurately is an important skill in both D\&T and mathematics.

Remember that you can measure lengths in metres, centimetres or millimetres:
$1 \mathrm{~m}=100 \mathrm{~cm}$ and $1 \mathrm{~cm}=10 \mathrm{~mm}$

Numeracy Across the Curriculum

GEOGRAPHY

Representing Data

The 3 main ways you might represent data are in a bar chart, a pie chart or a line graph.

This climate graph shows average annual rainfall and temperature throughout the year for a particular area.

A bar chart is used here to show the rainfall. Note how there are equal spaces between the bars. You should always leave spaces between the bars if the data is not numerical (or is numerical but is not continuous).

A line graph is used here to show the temperature and how it changes over the year. Line graphs should only be used with data in which the order in which the categories are written is significant.

Points are joined if the graph shows a trend or when the data values between the plotted points make sense to be included.

With any kind of graph take care to label your axes carefully and accurately.

Numeracy Across the Curriculum
 GEOGRAPHY

Grid References and Coordinates

Grid references give the position of objects on a map. Coordinates give the position of points on a 2D plane.

In geography grid references are given using the number across the bottom of the map first (Easting) followed by the number up the side of the map (Northing).

In maths we use coordinates to describe the position of a point on a plane. The x-coordinate (given by moving across the horizontal axis) is given first followed by the y-coordinate (given by moving up or down in the direction of the vertical axis).

Here the coordinates of the hill and the wood are given by:

Hill: $(4,4)$
Wood: $(-4,2)$
Remember: Always give the x-coordinate before the y-coordinate.
The grid reference of the point shown would be $\underline{197814}$

Numeracy Across the Curriculum

GEOGRAPHY

Scale

In Geography the scale of a map is the ratio between the size of an object on the map and its real size.

This scale is for a 1:50 000

km on the ground
scale map.
1 cm on the map represents 50000 cm on the ground.

$$
50000 \mathrm{~cm}=500 \mathrm{~m}=0.5 \mathrm{~km}
$$

Ordnance Survey maps have different scales. Travel maps, for long distance travel, have a scale of 1:125 000 where 1 cm represents 1.25 km .

Explorer maps, for walking, have a scale of 1:25000 where 1 cm represents 250 m .

Landplan maps, used by town planners, have a scale of 1:10 000 where 1 cm represents 100 m .

In Maths we use scale in a similar way.
Scale is $1: 250,000$.

$A B=1.8 \times 250000=450000 \mathrm{~cm}=4500 \mathrm{~m}=\underline{4.5} \mathrm{~km}$
Similarly to find what length to draw an object on a diagram you would divide the real length by the scale factor. A distance of 6 km in real life would be represented by:
$6 \div 250000=0.000024 \mathrm{~km}=0.024 \mathrm{~m}=2.4 \mathrm{~cm}$

Numeracy Across the Curriculum

GEOGRAPHY

The Handling Data Cycle

The handling data cycle is used when collecting and analysing data. You might use it for a controlled assessment or on a field trip in Geography. In maths you would use it for a statistical investigation. It's important to be aware of each of the stages to make sure that vital steps aren't missed out.

Numeracy Across the Curriculum

GEOGRAPHY

Representing Data

The 3 main ways you might represent data are in a bar chart, a pie chart or a line graph.

USA

Brazil

The pie charts show the differences in the split between primary, secondary and tertiary employment in USA, Brazil and

Nepal. Make sure to include a key whenever you draw pie charts and to label your charts clearly.

These pie charts use data in the form of percentages. Percent means "out-of-100." In a percentage pie-chart the circle is divided into 100 equal parts and shared out between the groups. Since there are 360° in a full turn, each percent of the pie chart uses:

$$
360^{\circ} \div 100=3.6^{\circ}
$$

So for a sector representing 23% you would need to measure a sector of:

$$
23 \times 3.6^{\circ}=82.8^{\circ}
$$

You would then round this to the nearest whole degree, i.e. 83°

Numeracy Across the Curriculum ICT

LOGO

Logo is a simple computer programming language which can be used to control devices. For example, a small robot known as a turtle can be moved around the floor using logo.
\(\left.\left.$$
\begin{array}{|c|c|}\hline \text { Command } & \text { Action } \\
\hline \text { FORWARD 10 } & \text { Move forward 10 steps } \\
\hline \text { BACK 20 } & \begin{array}{c}\text { Move backward 20 } \\
\text { steps }\end{array} \\
\hline \text { LEFT 90 } & \text { Turn anticlockwise } 90^{\circ} \\
\hline \text { RIGHT 60 } & \text { Turn clockwise 60}\end{array}
$$ \right\rvert\, \begin{array}{c}Lower pen and begin

drawing\end{array}\right\}\)| Raise pen and stop |
| :---: |
| drawing |

This table summarises the main commands used in LOGO.

LOGO can be used to draw different mathematical shapes.

Example 1: Square
FORWARD 10
RIGHT 90
FORWARD 10
RIGHT 90
FORWARD 10
RIGHT 90
FORWARD 10
RIGHT 90

For a regular hexagon each interior angle is 120° and each exterior angle is 60°.

Example 2: Regular hexagon
FORWARD 10 RIGHT 60
FORWARD 10
RIGHT 60
FORWARD 10 RIGHT 60
FORWARD 10 RIGHT 60

FORWARD 10 RIGHT 60
FORWARD 10 RIGHT 60

Numeracy Across the Curriculum

ICT

Dynamic Geometry Software

Dynamic geometry software refers to computer programs which allow you to create and then manipulate geometric constructions. The main ones used in maths are shown below.

All three software programs allow you to plot graphs from equations and manipulate them. They also allow you to create geometric shapes and carry out transformations on them. GeoGebra is a free piece of software that you could download at home. Autograph is used mainly with our $6^{\text {th }}$ form students.

Numeracy Across the Curriculum

ICT

Representing Data

Once data has been inputted into a Spreadsheet, it can be represented in different types of charts and graphs.

PCs (Using Excel)

MACs (Using Numbers)

For both software packages the steps to creating a chart or graph are similar.

1. Input your data
2. Select your data
3. Insert a chart or graph
4. Edit the preferences on your chart or graph

Any charts or graphs you create can then be put into presentations.

Numeracy Across the Curriculum

ICT

Using formulae in spreadsheets

Using formulae in spreadsheets allows you to work out a fixed calculation for a range of inputs. At this school you will mainly use spreadsheets within Excel.

Example: A bank gives compound interest at a rate of 2% per annum on its current accounts. How much money will the following people have after 1 year? 2 years? 3 years?

To find 2% of a number we multiply by 0.02 . To increase a number by 2% we multiply by 1.02 .

To input a formula into a cell in a spreadsheet you must always start with an "=" sign. To multiply you use the "*" symbol.

Therefore in cell C2 you would type:

$$
=B 2 * 1.02
$$

[This increases the value in B2, i.e. Leonora's deposit, by 2%]

> And in cell D2 you would type:
$=C 2 * 1.02$ etc.

Numeracy Across the Curriculum

MFL

Mental arithmetic in other languages

	Français	Español	Deutsch
$1+2=3$	Un plus deux fait trois	Uno más dos es tres	Eins plus zwei macht drei
$9-4=5$	Neuf moins quatre fait cinq	Nueve menos cuatro es cinco	Neun minus vier macht fünf
$6 \times 7=42$	Six fois sept fait quarante-deux	Seis multiplicado por siete es cuarenta y dos	Sechs mal sieben macht zwei und vierzig
$100 \div 20=5$	Cent divisé par vingt fait cinq	Cien dividido por veinte es cinco	Hundert durch zwanzig macht fünf

Numeracy Across the Curriculum

MUSIC

Time and speed

In maths you learn that:
1 hour $=60$ minutes
and
1 minute $=60$ seconds
and that

In music, tempo is the speed or pace of a given piece. It can be given as a number of beats per minute (BPM). A particular note value is specified as the beat, and marking indicates that a certain number of these beats must be played per minute.

For example, in this piece the tempo is 120 semi-quavers a minute

Tempo has a significant effect on the mood or difficulty of a piece.

Metronomes can be used to help you keep the number of beats per minute fixed as you play a piece.

This table shows how a DJ might change the BPM of a track in order to change its genre.

Numeracy Across the Curriculum

MUSIC

Equivalent fractions

In music each different type of note is worth a different fraction of a whole beat. Depending on which notes you use you get different rhythms in your music. Composers are able to match different rhythms by working out which combinations of notes are equivalent to each other.

Symbol	0						
Name	Semibreve	Minim	Crotchet	Quaver	Semiquaver	Demi-semiquaver	Hemi-demi-semi-quaver
Fraction of a beat	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$

Now think about rhythm using equivalent fractions...
$\frac{1}{2}=\frac{2}{4}=2 \times \frac{1}{4}$
so d lasts for the same time as
Using equivalent fractions can you work out which other combinations of
Also $\quad \frac{1}{4}=\frac{4}{16}=4 \times \frac{1}{16}$
so
d lasts for the same time as notes last the same time?

Numeracy Across the Curriculum

HISTORY

Timelines and Sequencing Events

In history, timelines allow you to place events in their correct historical order. From them you can see how far apart different events occurred in history. To work out how many years ago something occurred you simply take the year it happened away from the current year. For example the world's first CD player was produced in 1982.

If the current year is 2012, this would be 2012-1982 $=30$ years ago.

Numeracy Across the Curriculum
 HISTORY

The Handling Data Cycle

The handling data cycle gives you a guide on how to carry out a statistical investigation. Whatever the data you are collecting, the cycle allows you to gain a thorough understanding of its significance.

For example in History you might looking at the effects the great depression had on the American people. What kind of data would you need to collect? How might you process and represent it?

Numeracy Across the Curriculum

HISTORY

Using Charts and Graphs

British Civilian Casualties by Enemy Action, 1940-45 (HO191/11)

Charts and graphs can provide extremely useful historical information. It \dagger is important that you are able to interpret them correctly.

This stacked bar chart shows the British civilian casualties in the Second World War.

You need to use the key and the scale on the left t hand side to interpret how many of each type of casualty occurred each month.

Numeracy Across the Curriculum

Physical Education

Time, Distance and Speed

In maths you learn that: Speed $=$ Distance travelled Time taken

In PE you will need to consider speed when working out how fast someone

Ussain Bolt took Gold in the 100 metres at the 2012 London Olympics in 9.63 seconds.
 runs, cycles or swims a given distance. Comparing speeds allows you to analyse performance.

Speeds can be given in different units including metres per second (m / s) and kilometres per hour (km/h).

Ellie Simmonds won Gold in the SM6 200 metres medley at the London 2012 Paralympics with a time of 3 minutes 6.97 seconds.

There are 60 seconds in a minute so

$$
3 \mathrm{~min}=3 \times 60 \mathrm{~s}=180 \mathrm{~s}
$$

Total time $=180+6.97=186.97 \mathrm{~s}$
Speed $=\frac{\text { distance }}{\text { time }}=\frac{200 \mathrm{~m}}{186.97 \mathrm{~s}}=1.1 \mathrm{~m} / \mathrm{s}$

Numeracy Across the Curriculum

Physical Education

Collecting and Analysing Data

In PE you will often have to collect and analyse data to assess your performance.

In PE the multi-stage fitness test, also known as the bleep test, is used to estimate your maximum oxygen uptake or VO_{2} max. The test is an accurate test of your Cardiovascular fitness.

The test involves running continuously between two points that are 20 m apart from side to side. These runs are synchronized with beeps played at set intervals.

As the test proceeds, the interval between each successive beep reduces, forcing you to increase your speed until it is impossible to keep up.

At the end of the test you get a bleep score or level.

Jobs require different bleep scores to meet their physical requirements. For an Officer in the British Army, males need a minimum score of 10.2 while females need a minimum score of 8.1.

As your fitness improves you would expect your bleep test score to improve.

Charts can be used to see how many levels you have improved by between tests.

Numeracy Across the Curriculum
 Physical Education

Map References and Bearings

Physical Education isn't just limited to what you do in PE lessons. At school you have the opportunity to participate in the Duke of Edinburgh Award Scheme which gives you the chance to go on expeditions where you will need to plan your own route using maps. Map reading links strongly with your maths lessons involving work on coordinates and bearings.

Maps use grid references in the same way coordinates are used in maths.

Read along the horizontal scale first and then along the vertical scale.

On this map the square shaded light green would be given by the four figure grid reference 1322. The specific location of the temple within it would be given by a six figure grid reference, 133223.

3 figure-bearings

Bearings tell you what direction one object is from another.

They are always measured clockwise from North and given using 3 figures.

Here the bearing of O from A is 040°.

The bearing of A from 0 is 220°.

Numeracy Across the Curriculum
 Physical Education

Using Averages - Mean, Mode and Median

An athlete's performance will vary from event to event depending on their level of fitness at the time and the conditions they are competing in. It is useful to measure performance on different occasions and use an "average" measurement to give a more balanced indication of their overall performance.

In the javelin at the London Olympics 2012 Barbora Spotakova won Gold.

She threw four throws

Attempt	Mark (m)
1	66.90
2	66.88
3	66.24
4	69.55

What was her average throw?

There are three main types of average: mode, median and mean.

The mode is the most common value. Since all her throws were different there is no mode for this data.

The median is the middle value. First put the values in ascending order:
, 69.55 , 66.90, 66.88.24

Then find the middle value. When there are 2 middle values use the number half way between them.

$$
\text { Median }=\frac{66.88+66.90}{2}=\underline{66.89 \mathrm{~m}}
$$

The mean is found by adding up all the values and then dividing by how many values there are.

$$
\text { Mean }=\frac{66.24+66.88+66.9+69.55}{4}=\underline{67.4 \mathrm{~m}}
$$

Which average best indicates her performance? Why?

Numeracy Across the Curriculum

PSHE, RELIGIOUS EDUCATION \& CITIZENSHIP

Discussing Numbers

Numbers come up in conversations in everyday life all the time. You should use your mathematical knowledge in order to refer to them accurately.

Numbers

"Across England, 48,510 households were accepted as homeless by local authorities in 2011."

$48,510=$ Forty eight thousand, five hundred and ten

Percentages
"About 6\% of Britain's population is gay or lesbian."

$6 \%=$ Sixper cent

Fractions
"About 1/10 of the population of the USA is left-handed."

$1 / 10=$ "one tenth" or "one in ten"

Numeracy Across the Curriculum

 PSHE, RELIGIOUS EDUCATION \& CITIZENSHIP

 PSHE, RELIGIOUS EDUCATION \& CITIZENSHIP}

The Handling Data Cycle

The handling data cycle gives you a guide on how to carry out a statistical investigation. Whatever the data you are collecting, the cycle allows you to gain a thorough understanding of its significance.

For example in Religious Education you might want to investigate the effect someone's religion has on their view of death. What data might you collect? Who would you collect it from? How would you do this? How would you illustrate your findings? What would you expect to conclude?

Numeracy Across the Curriculum

 PSHE, RELIGIOUS EDUCATION \& CITIZENSHIP

 PSHE, RELIGIOUS EDUCATION \& CITIZENSHIP}

Mathematics in Other Cultures

Babylonia was situated in the area that is now the Middle East. The Babylonian civilisation existed from about $2300 B C$ to $500 B C$.

The Babylonians divided the day into 24 hours, each hour into 60 minutes and each minute into 60 seconds. This form of counting has survived for over 4000 years.

The Babylonians had an advanced number system with a base of 60 rather a base of 10 .

Perhaps the most amazing aspect of the Babylonian's calculating skills was their construction of tables to aid calculation. Two tablets found dating from 2000 $B C$ give the squares of numbers up to 59 and the cubes of numbers up to 32 .

The table gives $8^{2}=1,4$ which stands for

$$
8^{2}=1,4=1 \times 60+4=64
$$

Numeracy Across the Curriculum

PSHE, RELIGIOUS EDUCATION G CITIZENSHIP

Mathematics in Other Cultures

The Egyptians were very practical in their approach to mathematics and their trade required that they could deal in fractions. Egyptians used mainly unit fractions i.e. fractions with a numerator equal to one.

1/2	1/3	1/4	1/5
\longrightarrow	11	$\overparen{111}$	$\xrightarrow{111}$

The Egyptians worked out that the year was 365 days long and used this for a civil calendar. Eventually the civil year was divided into 12 months, with a 5 day extra period at the end. The Egyptian calendar was the basis for the Julian and Gregorian calendars.

The ancient Egyptians used a number system with base 10.

Larger numbers had special symbols

10, 100, 1000, 10000, 100000, 1 million

Can you find the numbers on this tablet indicating how many of each item this man wished to take to the afterlife?

Numeracy Across the Curriculum

PSHE, RELIGIOUS EDUCATION \& CITIZENSHIP

Probability, Risk and Chance

What's the chance of you becoming infected with HIV? What's the risk of a baby being stillborn? How likely is it that you will live longer than your parents do? All these questions are connected with probability.

Probability can be discussed in different ways. Sometimes you simply use words such as "likely", "impossible" or "certain" making sure to back up your opinions with evidence.

I think it is likely that I will live longer than my parents do because health care is improving year by year. This means that when I am older there will probably be cures for many of the diseases people die from these days. On the other hand it is possible that we could have a nuclear war...

You can give a more objective viewpoint if your probabilities are backed up by numbers.

From this Pie Chart you can see that 80.5% of India's population are Hindu.

If an Indian citizen was picked at random from a
database you could estimate the probability that they were Hindu as
 80.5\%.

It would also be fair to say that they would be unlikely to be Buddhist.

Numeracy Across the Curriculum

PSHE, RELIGIOUS EDUCATION \& CITIZENSHIP

Interpreting Charts and Graphs

Being able to interpret and discuss the information in charts and graphs is an important skill. Many organisations use charts and graphs to illustrate issues that are relevant to their work.

These charts are from the Save the Children website. They show how the charity spent the money they received

$$
\text { in } 2011 .
$$

They are a form of Pie Chart. Pie charts are good at allowing you to compare the relative size of different things. Notice how the Pie Chart is clearly labelled to give you as much information as possible.

This line graph is from the Office of National Statistics and shows the birth and death rates since 1901 in the UK.

Look at the dips and peaks in the birth rate, by comparing these with the dates below can you suggest reasons why they occurred?

Line graphs are very useful at showing trends over time.

Numeracy Across the Curriculum
 SCIENCE

Substituting into Formulae

In both your maths and science lessons you will be expected to substitute into formulae. In formulae different variables are represented by letters.

Substitution simply means putting numbers where the letters are to work something out.

Example

A diver who has a mass of 50 kg dives off a diving board 3.0 metres above the water level. What is her kinetic energy when she reaches the water?
[Formula 1] Kinetic energy gained = gravitational potential energy lost

$$
=\text { weight } \times \text { height }
$$

You must calculate her weight to use in this equation
[Formula 2] Weight $=$ mass \times gravitational field strength
[Substitution] Weight $=50 \mathrm{~kg} \times 10 \mathrm{~N} / \mathrm{kg}$
Weight $=\underline{500 \mathrm{~N}}$
Kinetic energy gained $=$ weight \times height
[Substitution] Kinetic energy gained $=500 \mathrm{~N} \times 3 \mathrm{~m}$

$$
=1500 \mathrm{~J}
$$

Numeracy Across the Curriculum
 SCIENCE

Continuous and Discrete Data

Continuous data

Continuous data can

take any value in a range.

An example of a continuous variable is mass, for example the mass of iron in a mixture of iron filings and sulphur powder.

The iron could have a mass of $3.6 \mathrm{~g}, 4.218 \mathrm{~g}, 0.24 \mathrm{~g} \mathrm{etc}$.
depending on the mixture concerned.
In biology, a characteristic of a species that changes gradually over a range of values shows continuous variation. An example of this is height.

Discrete data

Discrete data can only take certain fixed values.
The pH of a solution is a discrete variable. The pH of a solution can take integer values of pH from pH 0 for a very strong acid to pH 14 for a very strong alkali. Solutions with pH 7 are said to be neutral.

In biology a characteristic of any species with only a
limited number of possible values shows
discontinuous variation. An example is blood group there are only 4 types of blood group ($A, B, A B$ and 0), no other values are possible.

Numeracy Across the Curriculum science

Handling Data

Most charts and graphs you use in science you will also use in maths. Here are some examples.

Numeracy Across the Curriculum
 sCIENCE

Converting between Metric Units

There are two main types of units:

Imperial Units
(Stones, pints, miles etc.) Old system of units

Metric units

(kilograms, litres, metres etc.) Modern system of units

Metric units follow the decimal system. To convert between them you multiply or divide by multiples of 10 .

$$
\text { For example } 1 \mathrm{~kg}=1000 \mathrm{~g}
$$

So $3.4 \mathrm{~kg}=3.4 \times 1000=\underline{2400 \mathrm{~g}}$
And $24 \mathrm{~g}=24 \div 1000=\underline{0.024 \mathrm{~kg}}$

When working out calculations it is important that the units you are using are compatible.

Speed $=$ Distance travelled
Time taken

If the speed is in kilometres per hour then the distance needs to also be measured in kilometres and the speed needs to be measured in hours.

What is the average speed in km / h of a car if it travels 4600 metres in 15 minutes?

$$
4600 \mathrm{~m}=4600 \div 1000=4.6 \mathrm{~km}
$$

15 minutes $=15 \div 60$ hours $=0.25$ hours

$$
\begin{gathered}
\text { Speed }=\underset{\text { Distance }}{\text { Dime }}=\frac{4.6}{0.25}=\underline{18.4 \mathrm{~km} / \mathrm{h}} \text {. }
\end{gathered}
$$

Numeracy Across the Curriculum SCIENCE

Manipulating Algebraic Formulae

Manipulating algebraic formulae allows you to rearrange formulae so that you can work out the value of
different variables. This is also known as "changing the subject of a formula."

The Power Equation

$$
P=I V \quad \begin{array}{ll}
P & =\text { power (watts) } \\
I & =\text { current (amps) } \\
& \text { V }=\text { voltage (volts) }
\end{array}
$$

e.g. If a bulb generates 24 watts with a current of 2 amps flowing through it, what is the voltage across it?

$$
P=I V
$$

[Rearranging] $\quad V=\underline{P}$

[Substituting]

$$
V=\frac{24}{2}=\underline{12 \text { volts }}
$$

Equations of Motion

$$
v=u+a t \quad \begin{aligned}
& v=\text { final velocity }(\mathrm{m} / \mathrm{s}) \\
& u=\text { initial velocity }(\mathrm{m} / \mathrm{s}) \\
& a \\
& \\
& \\
& \\
& t=\text { acceleration }\left(\mathrm{m} / \mathrm{s}^{2}\right) \\
& \mathrm{t})
\end{aligned}
$$

e.g. A ball is rolled along the ground for 20 seconds. Its initial velocity is $10 \mathrm{~m} / \mathrm{s}$ and its final velocity is $45 \mathrm{~m} / \mathrm{s}$. What is its acceleration?

$$
v=u+a t
$$

[Rearranging] $v-u=a t$ therefore $\frac{v-u}{t}=a$
[Substituting] $a=\frac{v-u}{t}=\frac{45-10}{20}=\underline{1.75 \mathrm{~m} / \mathrm{s}^{2}}$

Numeracy Across the Curriculum

sCIENCE

Compound measures

A compound measure is made up of two (or more) other measures.

Speed is a compound measure made up from a measure of length (kilometres) and a measure of time (hours).

Density is made up from a measure of mass (grams) and a measure of volume (cubic centimetres).

Density tells you how compact a substance is.

Speed $=$ Distance

Triangles are often used to show the relationship between the compound measure and the measures it is made up of.

$$
\text { Density }=\frac{\text { Mass }}{\text { Volume }}
$$

The triangle can be used to rearrange the formula.

For example in this case:
Mass $=$ Density \times Volume
and
Volume $=$ Mass
Density

