HIGHER MATHS

Trigonometry

Notes with Examples

Exact Values

You need to know the exact value of \sin, \cos and tan of five different angles.
You can either memorize the tables or know how to calculate them.
Sin, cos and tan of 0° and 90°

This comes from the graphs of each function

$$
\sin 0^{\circ}=0 \quad \sin 90^{\circ}=1
$$

$$
\cos 0^{\circ}=1 \quad \cos 90^{\circ}=0
$$

$\tan 0^{\circ}=0 \quad \tan 90^{\circ}=$ undefined

Sin, cos and tan of 45°

This comes from a $1,1, \sqrt{2}$ triangle

1
$\sin 45^{\circ}=\frac{O}{H}=\frac{1}{\sqrt{2}}$
$\cos 45^{\circ}=\frac{A}{H}=\frac{1}{\sqrt{2}}$
$\tan 45^{\circ}=\frac{O}{A}=\frac{1}{1}=1$

Sin, cos and tan of 30° and 60°

This comes from a $1,2, \sqrt{3}$ triangle. This starts off as a $2,2,2$ equilateral triangle.

This table shows every exact value you need to know.

	0°	30°	45°	60°	90°
$\sin x$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined

Examples

T-01 Calculate the exact value of
(a) $\sin 45^{\circ}$
(b) $\cos 300^{\circ}$
(c) $\sin (-135)^{0}$
(d) $\tan \frac{7 \pi}{4}$

$$
=\frac{1}{\sqrt{2}}
$$

$=\cos 60$
$=\sin 225$
$=-\tan \frac{\pi}{4}$
$\frac{1}{2}$
$=-\sin 45$
$=-\frac{1}{\sqrt{2}}$
$=-1$

T-02 Find, in its simplest form, the exact value of
(a) $2 \sin 300^{\circ} \cos 150^{\circ}$
(b) $\sin 210^{\circ}+\cos 210^{\circ}$

$$
\begin{aligned}
& =2 \times(-\sin 60) \times(-\cos 30)= \\
& \left.=2 \times\left(-\frac{\sqrt{3}}{2}\right) \times\left(-\frac{\sqrt{3}}{2}\right)=-\frac{1}{2} 30\right)+(-\cos 30) \\
& =\frac{6}{4} \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

T-03 Solve $\sqrt{3} \tan x=1$ using exact values and giving your answer in radians.

$$
\begin{aligned}
& \sqrt{3} \tan x=1 \\
& \tan x=\frac{1}{\sqrt{3}} \\
& x=30,210 \\
&=\frac{\pi}{6}, \frac{7 \pi}{6} \\
&=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
&=30^{\circ} \\
& \frac{S}{S} A^{N}
\end{aligned}
$$

Solving in degrees

We must know how to solve trig equations in degrees for angles beyond 360°. Plus we must know exact values.

We also need to know how to solve equations with compound angles. A compound angle equation may look like this

$$
3 \sin (x+45)^{\circ}=2 \quad \text { or } \quad 4 \tan 2 x^{\circ}=3
$$

We no longer have x^{0} but the angle is a function of x°

Examples

T-04 Solve these equations for x.
(a) $4 \tan x^{\circ}-3=0,0^{\circ}<x<720^{\circ}$
(b) $2 \sin x^{\circ}+1=0,0^{\circ}<x<270^{\circ}$

$$
\begin{aligned}
& 4 \tan x-3=0 \\
& \tan x=\frac{3}{4} \\
& 2 \sin x+1=0 \\
& \sin x=\frac{-1}{2} \\
& \tan ^{-1}\left(\frac{3}{4}\right) \quad x=36.9,216.9,396.9,576.9 \\
& =36.9^{\circ} \\
& S_{m} \operatorname{m}^{-1}\left(\frac{1}{2}\right) \\
& =30 \\
& \begin{array}{c|c}
S & A^{r} \\
\hline T & C
\end{array} \\
& \begin{array}{l|l}
S & A \\
\hline T & C_{J}
\end{array}
\end{aligned}
$$

T-05 Solve these equations for x.

Solving in radians

We have to be able to solve trig equations in radians as well as degrees. Remember to multiply by π and divide by 180.

We also need to know how to solve equations from a graph or a modelled situation.

Examples

T-06 Solve these equations for x in radians.

$$
\begin{aligned}
& \text { (a) } 2 \tan 2 x-1=0,0<x<2 \pi \\
& \text { (b) } 2 \sin 3 x+1=0,0<x<2 \pi \\
& \text { (b) } 2 \sin 3 x+1=0 \\
& \sin 3 x=-\frac{1}{2} \\
& \tan ^{-1}\left(\frac{1}{2}\right) \quad 2 x=27^{\circ}, 207^{\circ}, 387^{\circ}, 567^{\circ} \\
& =27^{\circ} \quad x=13.5^{\circ}, 103.5^{\circ}, 193.5^{\circ}, 283.5^{\circ} \\
& x=0.23,1.81,3.38,4.95 \\
& \begin{array}{l|l}
S & A^{2} \\
\hline T & C
\end{array} \\
& \sin ^{-1}\left(\frac{1}{2}\right) \quad 3 x=\frac{7 \pi}{6}, \frac{11 \pi}{6}, \frac{19 \pi}{6}, \frac{23 \pi}{6}, \frac{31 \pi}{6}, \frac{35 \pi}{6} \\
& \text { (a) } 2 \tan 2 x-1=0 \\
& \tan 2 x=\frac{1}{2} \\
& 2 x=27^{\circ}, 207^{\circ}, 387^{\circ}, 567^{\circ} \\
& x=0.23,1.81,3.38,4.95 \\
& =30^{\circ}=\frac{\pi}{6} \quad x=\frac{7 \pi}{18}, \frac{11 \pi}{18}, \frac{19 \pi}{18}, \frac{23 \pi}{18}, \frac{31 \pi}{18}, \frac{35 \pi}{18} \\
& \begin{array}{c|c}
S & A \\
\hline \checkmark T & C \checkmark
\end{array}
\end{aligned}
$$

T-07 The diagram shows the graph of a cosine function.
(a) State the equation of the function
(b) The straight line $y=3$ cuts the graph at A and B. State the coordinates of A and B.

(a) $y=3 \cos 2 x+1$
(b) $\quad 3 \cos 2 x+1=3$
$3 \cos 2 x=2$ $\cos 2 x=\frac{2}{3}$

$$
\cos ^{-1}\left(\frac{2}{3}\right) \quad 2 x=48^{\circ}, 322^{\circ}, 408^{\circ}, 682^{\circ}
$$

$=48^{\circ}$ $x=24^{\circ}, 161^{\circ}, 204^{\circ}, 341^{\circ}$

s	A^{v}
T	C_{V}

$$
A(24,3) \quad B(161,3)
$$

Modelling real life context

Example

T-08 The depth of water, D metres, in a harbour is given by the formula

$$
D=3+1.75 \sin 30 h^{\circ}
$$

where h is the number of hours after midnight.
(a) Calculate the depth of water at 5 am .
(b) Calculate the first six times after midnight Monday that the water will be at 3.6 m
(a) $D=3+1.75 \mathrm{sin} 30 \mathrm{~h}$
$=3+1.75 \sin (30 \times 5)$
$=3+1.75 \operatorname{sm}(150)$
$=3+1.75(0.5)$
$=3.875 \mathrm{~m}$
(b) $3+1.75 \sin 30 h=3.6$
$1.75 \mathrm{sm} 30 \mathrm{~h}=0.6$
$\sin ^{-1}\left(\frac{0.6}{1.75}\right) \quad \sin 30 h=\frac{0.6}{1.75}$
$=20$

$\quad 20$	A^{\prime}
T	C

$$
\begin{aligned}
30 h & =20,160,380,520,740,880 \\
b & =\frac{20}{30}, \frac{160}{30}, \frac{380}{30}, \frac{520}{30}, \frac{740}{30}, \frac{880}{30}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TIME }==00: 40 \mathrm{MON}, 05: 20 \mathrm{MON}, \\
& 12: 40 \mathrm{MON}, 17: 20 \mathrm{MON}, \\
& \text { od: } 40 \text { TUE, } 05: 10 \text { TUE }
\end{aligned}
$$

Addition Formulae

We looked at compound angles previously and will be working with these angles using the addition formulae.

There are four addition formulae:

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B
\end{aligned}
$$

These are given in an assessment and look like:

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \overline{\sin A \sin B}
\end{aligned}
$$

We need to know how to expand from $\sin (A+B)$ and also recognise the expansion and be able to convert back. This is covered later when we look at the wave function.

Examples

T-09 Rewrite these expressions in terms of a single angle.
(a) $\sin 35^{\circ} \cos 25^{\circ}-\cos 35^{\circ} \sin 25^{\circ}$
(b) $\cos \frac{\pi}{3} \cos \frac{\pi}{4}-\sin \frac{\pi}{3} \sin \frac{\pi}{4}$
(a) $\sin (35-25)$
(b) $\cos \left(\frac{\pi}{3}+\frac{\pi}{4}\right)$
$=\sin 10$
$=\cos \left(\frac{7 \pi}{12}\right)$

T-10 Find the exact value of
(a) $\sin 20^{\circ} \cos 10^{\circ}+\cos 20^{\circ} \sin 10^{\circ}$
(b) $\cos \frac{\pi}{3} \cos \frac{\pi}{12}+\sin \frac{\pi}{3} \sin \frac{\pi}{12}$
(c) $\cos 15^{\circ}$
(d) $\sin \frac{5 \pi}{12}$
(a) $\sin 20 \cos 10+\cos 20 \sin 10$
(c) $\quad \cos 15^{\circ}$
$=\sin (20+10)$
$=\sin 30$
$=\cos (45-30)$
$=\frac{1}{2}$
(b) $\cos \frac{\pi}{3} \cos \frac{\pi}{12}+\sin \frac{\pi}{3} \sin \frac{\pi}{12}$
$=\cos 45 \cos 30+\sin 45 \sin 30$
$=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2}$
$=\cos \left(\frac{\pi}{3}-\frac{\pi}{12}\right)$
$=\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}$
$=\cos \left(\frac{3 \pi}{12}\right)$
$=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
$=\frac{1}{\sqrt{2}}$
(d) $\sin \left(\frac{5 \pi}{12}\right)$
$=\sin \left(\frac{\pi}{4}+\frac{\pi}{6}\right)$
$=\sin \frac{\pi}{4} \cos \frac{\pi}{6}+\cos \frac{\pi}{4} \sin \frac{\pi}{6}$
$=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2}$
$=\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}$
$=\frac{\sqrt{3}+1}{2 \sqrt{2}}$

T-11 Expand and simplify $\cos (x+60)^{\circ}$

$$
\begin{aligned}
& \cos (x+60) \\
= & \cos x \cos 60-\sin x \sin 60 \\
= & \frac{1}{2} \cos x-\frac{\sqrt{3}}{2} \sin x
\end{aligned}
$$

$\mathrm{T}-12$ Show that $\operatorname{sinQPS}=\frac{63}{65}$

$\sin \alpha=\frac{0}{H}=\frac{12}{13} \quad \sin \beta=\frac{0}{H}=\frac{3}{5}$
$\cos \alpha=\frac{A}{H}=\frac{5}{13} \quad \cos \beta=\frac{A}{H}=\frac{4}{5}$

$$
\begin{aligned}
\sin \text { QPS } & =\sin (\alpha+\beta) \\
& =\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& =\frac{12}{13} \times \frac{4}{5}+\frac{5}{13} \times \frac{3}{5} \\
& =\frac{48}{65}+\frac{15}{65} \\
& =\frac{63}{65}
\end{aligned}
$$

T-13 The diagram shows two right-angled triangles with sides and angles as given.

Calculate the value of $\cos (p+q)$

$$
\begin{array}{ll}
\sin p=\frac{0}{H}=\frac{2}{\sqrt{5}} & \sin q=\frac{O}{H}=\frac{2}{3} \\
\cos p=\frac{A}{H}=\frac{1}{\sqrt{5}} & \cos q=\frac{A}{H}=\frac{\sqrt{5}}{3}
\end{array}
$$

$\cos (p+q)$
$=\cos p \cos q-\sin p \sin q$
$=\frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{3}-\frac{2}{\sqrt{5}} \times \frac{2}{3}$
$=\frac{\sqrt{5}}{3 \sqrt{5}}-\frac{4}{3 \sqrt{5}}$
$=\frac{\sqrt{5}-4}{3 \sqrt{5}}$

Double Angle Formulae

We looked at compound angles previously and will be working with these angles using the double angle formulae.

There are four double angle formulae:

$$
\begin{aligned}
& \sin 2 A=2 \sin A \cos A \\
& \cos 2 A=\cos ^{2} A-\sin ^{2} A \\
& \cos 2 A=2 \cos ^{2} A-1 \\
& \cos 2 A=1-2 \sin ^{2} A
\end{aligned}
$$

These are given in an assessment.
We need to know how to expand and, in the case of $\cos 2 A$, what expansion to use.
It should be noted that any of these formulae work for any angle that can be expressed as a double angle.

Examples

T-14 Find the exact value of
(a) $2 \sin 15^{\circ} \cos 15^{\circ}$
(b) $1-2 \sin ^{2} \frac{\pi}{4}$
(a) $2 \sin 15 \cos 15$
(b) $1-2 \sin ^{2} \frac{\pi}{4}$
$=\sin (2 \times 15)$
$=\cos \left(2 \times \frac{\pi}{4}\right)$
$=\sin 30$
$=\frac{1}{2}$
$=\cos \frac{\pi}{2}$
$=0$

T-15 Find the exact value of
(a) $\sin 2 A$ where A is an acute angle with $\tan A=\frac{3}{4}$
(b) $\cos 2 P$ where P is an acute angle with $\cos P=\frac{3}{7}$
(a)

(b)

$$
\begin{aligned}
\sin 2 A & =2 \sin A \cos A \\
& =2 \times \frac{3}{5} \times \frac{4}{5}
\end{aligned}
$$

$$
=\frac{24}{25}
$$

$$
\begin{aligned}
\cos 2 p & =2 \cos ^{2} p-1 \\
& =2\left(\frac{3}{7}\right)^{2}-1 \\
& =\frac{18}{49}-1=-\frac{31}{49}
\end{aligned}
$$

T-16 If A and B are acute angle with $\cos A=\frac{4}{5}$ and $\sin B=\frac{5}{13}$, find the exact value of:
(a) $\sin 2 A$
(b) $\cos 2 A$

$$
\begin{array}{ll}
\sin A=\frac{0}{H}=\frac{3}{5} & \sin B=\frac{0}{H}=\frac{5}{13} \\
\cos A=\frac{A}{H}=\frac{4}{5} & \cos B=\frac{A}{H}=\frac{12}{13}
\end{array}
$$

(c) $\sin (2 A+B)$
(a) $\sin 2 A$

$$
\text { (b) } \begin{aligned}
& \cos 2 A \\
= & 2 \cos ^{2} A-1 \\
= & 2\left(\frac{4}{5}\right)^{2}-1
\end{aligned}
$$

$=2 \sin A \cos A$
(c) $\sin (2 A+B)$
$=2 \times \frac{3}{5} \times \frac{4}{5}$
$=\frac{32}{25}-\frac{25}{25}=\frac{7}{25}$

$$
=\sin 2 A \cos B+\cos 2 A \sin B
$$

$=\frac{24}{25}$

$$
\begin{aligned}
& =\frac{24}{25} \times \frac{12}{13}-\frac{7}{25} \times \frac{5}{13} \\
& =\frac{288}{325}-\frac{35}{325} \\
& =\frac{253}{325}
\end{aligned}
$$

T-17 If Q is an acute angle with $\cos Q=\frac{2}{3}$, show that $\sin 4 Q=-\frac{8 \sqrt{5}}{81}$

$$
\left.\left.\left.\begin{array}{rlrl}
\sin 2 Q & =2 \sin Q \cos Q & \cos 2 Q & =2 \cos ^{2} Q-1 \\
& =2 \times \frac{\sqrt{5}}{3} \times \frac{2}{3} & & \sin 4 Q
\end{array}\right)=2 \sin 2 Q \cos 2 Q\right)^{2}-1 \quad=2 \times \frac{4 \sqrt{5}}{9} \times-\frac{1}{9}\right)
$$

Quadratic Trigonometric Equations
We now need to know how to solve quadratic trigonometric equations. To solve these we need to factorise the equations.

If it helps, think of the quadratic function without the trig part!

$$
2 \cos ^{2} x+3 \cos x-2=0 \quad=====>2 x^{2}+3 x-2 \text { (to help factorise) }
$$

Examples
T-18 Solve
(a) $2 \cos ^{2} x+3 \cos x-2=0 \quad 0^{\circ}<x<360^{\circ}$
(b) $2 \sin ^{2} x-1=0 \quad 0^{\circ}<x<360^{\circ}$
(c) $4 \sin ^{2}\left(\theta-\frac{\pi}{6}\right)-3=0 \quad 0<\theta<2 \pi$
(a) $\quad 2 \cos ^{2} x+3 \cos x-2=0$

$$
\begin{array}{cc}
2 x^{2}+3 x-2=0 & (2 \cos x-1)(\cos x+2)=0 \\
(2 x-1)(x+2)=0 & \cos x=\frac{1}{2} \quad \cos x=-2 \\
& \frac{s}{T} A^{\prime} c_{j}^{\prime} \\
& x=60^{\circ}, 300^{\circ}
\end{array}
$$

$$
\begin{aligned}
& 2 \sin ^{2} x-1=0 \\
& \sin ^{2} x=\frac{1}{2} \\
& \sin x= \pm \frac{1}{\sqrt{2}} \\
& \begin{array}{l|l}
{ }^{\circ} S & A^{2} \\
\hline{ }^{2} & C,
\end{array} \quad x=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}
\end{aligned}
$$

(b)
(c)

$$
\begin{aligned}
4 \sin ^{2}\left(\theta-\frac{\pi}{6}\right)-3 & =0 \\
\sin ^{2}\left(\theta-\frac{\pi}{6}\right) & =\frac{3}{4} \\
\sin \left(\theta-\frac{\pi}{6}\right) & =+\frac{\sqrt{3}}{2}
\end{aligned}
$$

${ }^{\prime} S$	A^{v}
${ }^{\top}$	C^{v}

$$
\begin{aligned}
\theta-\frac{\pi}{6} & =\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3} \\
\theta & =\frac{3 \pi}{6}, \frac{5 \pi}{6}, \frac{9 \pi}{6}, \frac{11 \pi}{6} \\
\theta & =\frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}
\end{aligned}
$$

Quadratic Trigonometric Equations using Identities

We now need to combine everything we have learned in this topic to solve harder trig equations. Standard equation you need to know how to solve look like:

$$
\begin{array}{llll}
a \cos ^{2} x+b \sin x+c & \text { or } & a \sin ^{2} x+b \cos x+c & \text { quadratic mixed trig } \\
a \cos 2 x+b \sin x+c & \text { or } & a \cos 2 x+b \cos x+c & \cos 2 x \text { expansion } \\
a \sin 2 x+b \sin x+c & \text { or } & a \sin 2 x+b \cos x+c & \sin 2 x \text { expansion }
\end{array}
$$

where a, b and c are constants.
It is important that when we expand using the double angle formula that we choose the expansion that will let us factorise the resultant expression.

Remember that $\cos ^{2} x+\sin ^{2} x=1$

Examples

T-19 Solve
$\begin{array}{ll}\text { (a) } 5 \sin ^{2} x-2 \cos x-2=0 & 0^{\circ}<x<360^{\circ} \\ \text { (b) } & 6 \cos 2 x+\sin x=5\end{array}$
(a) $5 \sin ^{2} x-2 \cos x-2=0$

$$
5\left(1-\cos ^{2} x\right)-2 \cos x-2=0
$$

$$
5-5 \cos ^{2} x-2 \cos x-2=0
$$

$$
-5 \cos ^{2} x-2 \cos x+3=0
$$

$$
\left\{\begin{array}{l}
5 x^{2}+2 x-3 \\
=(5 x-3)(x+1)
\end{array}\right.
$$

$$
-\left(5 \cos ^{2} x+2 \cos x-3\right)=0
$$

$$
\begin{aligned}
& \cos ^{-1}\left(\frac{3}{5}\right) \\
& =37^{\circ} \\
& =S \mid A^{\circ} \\
& \hline T \mid C V
\end{aligned}
$$

(b) $6 \cos 2 x+\sin x=5$
$b \cos 2 x+\sin x-5=0$

$$
6\left(1-2 \sin ^{2} x\right)+\sin x-5=0
$$

$$
6-12 \sin ^{2} x+\sin x-5=0
$$

$$
-12 \sin ^{2} x+\sin x+1=0
$$

$$
-\left(12 \sin ^{2} x-\sin x-1\right)=0
$$

$\begin{aligned} & 12 x^{2}-x-1 \\ & (4 x+1)(3 x-1)\end{aligned}-(4 \sin x+1)(3 \sin x-1)=0$

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{1}{4}\right) \quad x=194^{\circ}, 346^{\circ} \quad x=19^{\circ}, 161^{\circ} \\
& =14^{\circ} \\
& \frac{S}{S} A^{\circ} \\
& =T
\end{aligned}
$$

$\sin ^{-1}\left(\frac{1}{3}\right)$
$=19^{\circ}$

$$
\begin{array}{l|l}
& A^{\prime} \\
\hline+ & C
\end{array}
$$

T-21 Solve

$$
\begin{array}{ll}
2 \sin 2 x+3 \sin x=0 & 0^{\circ}<x<360^{\circ} \\
2 \sin 2 x+3 \sin x=0 \\
2 \sin x \cos x+3 \sin x=0 \\
\sin x(2 \cos x+3)=0 \\
\sin x=0 \quad \cos x=-\frac{3}{2}
\end{array}
$$

T-22 The diagram shows the graphs of $y=\sin 2 x$ and $y=\cos x$.

Find the coordinates of A.

Point of intersection:

$$
\begin{aligned}
& \sin 2 x=\cos x \\
& \sin 2 x-\cos x=0 \\
& 2 \sin x \cos x-\cos x=0 \\
& \cos x(2 \sin x-1)=0 \\
& \cos x=0 \\
& x=90^{\circ} \\
& \begin{array}{rlrl}
\sin x & =\frac{1}{2} & \sin ^{-1} \frac{1}{2} \\
x & =30^{\circ}, 150^{\circ} & =30^{\circ} \\
& & & \\
& & A^{\circ} \\
& & T & C
\end{array}
\end{aligned}
$$

Three Points of intersection when $x=30,90,150$

$$
\text { Point A } x=150 \quad \begin{aligned}
y & =\cos 150 \\
& =-\cos 30 \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

all things trigonometric

DEGREE \& RADIANS:

$$
\pi \text { radians }=180^{\circ}
$$

to convert

$$
\begin{aligned}
& 45^{\circ}=\frac{45 \pi}{180}=\frac{\pi}{4} \\
& \frac{\pi}{4}=\frac{180 \pi}{4 \pi}=45^{\circ}
\end{aligned}
$$

EXACT ValuEs:

$$
\begin{array}{lccccc}
\text { CT VALUES: } & & \frac{\pi}{6} & \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{2} \\
& 0^{\circ} & 30^{\circ} & 45^{\circ} & 60^{\circ} & 90^{\circ} \\
\sin x & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 \\
\cos x & 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
\tan x & 0 & \frac{1}{\sqrt{3}} & 1 & \sqrt{3} & \text { und. }
\end{array}
$$

use the triangles:

CAST DIAGRAM: to solve

1. rearrange to trig function $=$
2. find first quadrant angle by ignoring sign
3. use CAST diagram \& sign to identify quads
4. Solve and state answers

$$
\begin{array}{rlr}
\sqrt{2} \sin x+1 & =0 & \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ} \\
\sqrt{2} \sin x & =-1 & \sin (-)^{+} \Gamma \mid A^{+} \\
\sin x & =\frac{-1}{\sqrt{2}} & -T \mid C- \\
\text { SoL III, II } x & =180+45,360-45 \\
& =225^{\circ}, 315^{\circ}
\end{array}
$$

EQUATIONS WITH x AND $2 x$:
equations with mixed angles (x° and $2 x^{\circ}$) cant be solved without replacing the $2 x$ using:

$$
\begin{aligned}
\geq & 2 \min 2 x
\end{aligned}=2 \sin x \cos x, ~ \cos 2 x=2 \cos ^{2} x-1 .
$$ substitution then factorise

COMPOUND ANGLe FORmulaE: these are given in a formulae sheet, just know how to use them

$$
\begin{aligned}
& \left.\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \quad \begin{array}{c}
\text { same } \\
\text { sign } \\
\cos (A \pm B)
\end{array}\right) \cos A \cos B \pm \sin A \sin B
\end{aligned}
$$

TRIG IDENTITIES: Remember these?

$$
\sin ^{2} x+\cos ^{2} x=1 \quad \frac{\sin x}{\cos x}=\tan x
$$

FOR Trig graphs see "functions \& graphs"

