HIGHER MATHS

Circle

Notes with Examples

Equation of a Circle with Centre (a, b)

The equation of a circle with centre (a, b) and radius r, can be given by

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

To find out if a point lies inside, on or outside a circle you must substitute the x and y values into the equation.

If $(x-a)^{2}+(y-b)^{2}<r^{2}$ the point lies inside the circle.
If $(x-a)^{2}+(y-b)^{2}=r^{2}$ the point lies on the circle.
If $(x-a)^{2}+(y-b)^{2}>r^{2}$ the point lies outside the circle.
Examples
C-01 Write down the equation of the circle with given centre and radius
(a) $(2,1) ; 7$
(b) $(-4,2) ; 3$
(c) $(5,-4)$; diameter $=3$
(a)
$(x-2)^{2}+(y-1)^{2}=49$
(b) $(x+4)^{2}+(y-2)^{2}=9$
(c)

$$
\begin{aligned}
& (x-5)^{2}+(y+4)^{2}=\left(\frac{3}{2}\right)^{2} \\
& (x-5)^{2}+(y+4)^{2}=\frac{9}{4}
\end{aligned}
$$

C-02 State the centre and radius of each of these circles
(a)

$$
(x+1)^{2}+(y-12)^{2}=40
$$

(b)

$$
(x-3)^{2}+(y-4)^{2}=225
$$

(a) Centre $(-1,12)$ radius $=\sqrt{40}$

$$
=2 \sqrt{10}
$$

(b) $\operatorname{CENTRE}(3,4) \quad$ RadiUS $=\sqrt{225}$

$$
=15
$$

C-03 Find the equation of the circle that passes through the point $(2,5)$ and has a centre of $(-1,2)$.

$$
\begin{aligned}
& \text { CENTRE }(-1,2) \quad \text { RADIUS }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
&=\sqrt{(2-(-1))^{2}+(5-2)^{2}} \\
&=\sqrt{9+9} \\
&=\sqrt{18} \\
&(x+1)^{2}+(y-2)^{2}=18
\end{aligned}
$$

C-04 Given $(x-3)^{2}+(y+2)^{2}=100$ is a circle, does $A(9,-6)$ lie inside, on or outside the circle?

$$
\begin{aligned}
& \text { SUBSTITUTE } x=9 \quad y=-6 \\
& (9-3)^{2}+(-6+2)^{2} \\
& =(6)^{2}+(-4)^{2} \\
& =36+16 \\
& =52
\end{aligned}
$$

```
52<100 SO A IS INSIDE CIRCLE
```


General Equation of a Circle

The general equation of a circle is given by

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

with a centre of $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$
This is given in a formulae sheet!
Note: For a circle to exist then $g^{2}+f^{2}-c>0$
To find out if a point lies inside, on or outside a circle you must substitute the x and y values into the equation.

If $x^{2}+y^{2}+2 g x+2 f y+c<0$ the point lies inside the circle.
If $x^{2}+y^{2}+2 g x+2 f y+c=0$ the point lies on the circle.
If $x^{2}+y^{2}+2 g x+2 f y+c>0$ the point lies outside the circle.

Examples

C-05 Do these equations represent circles?
(a)

$$
x^{2}+y^{2}-6 x+2 y-2=0
$$

(b)

$$
x^{2}+y^{2}+2 x-2 y+9=0
$$

(a) $\begin{aligned} & g^{2}+f^{2}-c \\ = & (-3)^{2}+(1)^{2}-(-2) \\ = & 12\end{aligned}$

$$
=12
$$

$$
12>0 \text { So THLS IS A CIRCLE }
$$

(b) $\quad g^{2}+f^{2}-c$
$=(1)^{2}+(-1)^{2}-9$
$=-7$
$-7<0$ SO THIS IS NOT A CIRCLE

C-06 State the centre and radius of each of these circles
(a)

$$
x^{2}+y^{2}-8 x-10 y+3=0
$$

(b)

$$
x^{2}+y^{2}-4 x+6 y-5=0
$$

(a)

$$
\begin{array}{rlrl}
2 g & =-8 & 2 f & =-10 \\
g & =-4 & f & =-5
\end{array}
$$

$$
\text { CENTRE }(4,5) \quad \text { RadiUS }=\sqrt{(-4)^{2}+(-5)^{2}-3}
$$

$$
=\sqrt{38}
$$

(b)

$$
\begin{array}{rlrl}
2 g & =-4 & 2 f & =6 \\
g & =-2 & f & =3
\end{array}
$$

$$
\begin{aligned}
\operatorname{CENTRE}(2,-3) \quad \text { RADIUS } & =\sqrt{(-2)^{2}+(3)^{2}-(-5)} \\
& =\sqrt{18} \\
& =3 \sqrt{2}
\end{aligned}
$$

C-07 A circle $x^{2}+y^{2}+4 x-2 y-84=0$ has a diameter $A B$. If A is the point $(-10,-4)$, find the coordinates of B.

$$
\text { CENTRE }=(-2,1)
$$

$$
\begin{aligned}
B & =(-2+8,1+5) \\
& =(6,6)
\end{aligned}
$$

C-08 Given $x^{2}+y^{2}-8 x-10 y-8=0$ is a circle, does $\mathrm{A}(1,-2)$ lie inside, on or outside the circle?

$$
\begin{aligned}
& x^{2}+y^{2}-8 x-10 y-8 \\
= & (1)^{2}+(-2)^{2}-8(1)-10(-2)-8 \\
= & 1+4-8+20-8 \\
= & 9
\end{aligned}
$$

```
q>0 SO POINT A LIES OUTSLDE THE CIRClE
```


Circle in Context

Examples

$\mathrm{C}-09$ The circle $x^{2}+y^{2}+2 x-14 y-15=0$ cuts the x-axis at points A and B , and the y-axis at C and D . Calculate the length of AB and CD .

$$
\begin{gathered}
\text { COTS XAXIS WHEN } y=0 \\
x^{2}+2 x-15=0 \\
(x+5)(x-3)=0 \\
x=-5 \quad x=3 \\
\text { LENGTH AB }=8
\end{gathered}
$$

CuTs 4 Axis WHEN $x=0$
$y^{2}-14 y-15=0$
$(y-15)(y+1)=0$
$y=15 \quad y=-1$
LENGTH CD $=16$

C-10 Circle C_{1} and C_{2} are concentric. The larger circle has the equation $x^{2}+y^{2}-4 x-6 y-68=0$. The radius of the smaller circle is half that of the larger circle. State the equation of the smaller circle.

LARGE CIRCLE

$$
=9
$$

$$
\begin{aligned}
& \text { Centre }(2,3) \\
& \text { RADIUS }=\sqrt{(-2)^{2}+(-3)^{2}-(-68)} \\
& =\sqrt{81} \\
& \text { RADIUS }=\frac{1}{2} \times 9 \\
& =\frac{9}{2} \\
& \text { EquATION: } \\
& (x-2)^{2}+(y-3)^{2}=\frac{81}{4} \\
& \left(\frac{9}{2}\right)^{2}=\frac{81}{4}
\end{aligned}
$$

C-11 Circle C_{1} and C_{2} are identical. C_{1} has a centre $(0,0)$ and a radius of 6 units. Circle C_{2} passes through the origin and its centre is on the y-axis. State both possible equations for circle C_{2}.

$$
c_{2} \quad \begin{aligned}
&(x-0)^{2}+(y-6)^{2}=36 \\
& x^{2}+(y-6)^{2}=36 \\
& \text { OR } \\
& x^{2}+(y+6)^{2}=36
\end{aligned}
$$

Points of Intersection with a Straight Line

There are three possibilities for the point of intersection between a circle and a straight line:

* the circle and line intersect at two points
* the circle and line intersect at one point (tangent)
* the circle and line do not intersect

This is similar to quadratic roots: two distinct roots, one repeated root and no real roots.

To find points of intersection we substitute the equation of the straight line into the circle and solve.

Examples

C-12 Find the points of intersection of these circles and lines
(a)

$$
x^{2}+y^{2}=10 ; y=3
$$

(b)

$$
x^{2}+y^{2}+2 x-2 y-11=0 ; 5 y-x+7=0
$$

(c)

$$
x^{2}+y^{2}-8 x-4 y-20=0 ; y=3 x+10
$$

(d)

$$
x^{2}+y^{2}-8 x-10 y-8=0 ; y=-2 x-5
$$

(a)

$$
\begin{aligned}
x^{2}+(3)^{2} & =10 \\
x^{2}+9 & =10 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

$$
\operatorname{POI}(1,3) \text { and }(-1,3)
$$

$$
\begin{equation*}
5 y-x+7=0 \tag{b}
\end{equation*}
$$

$$
(5 y+7)^{2}+y^{2}+2(5 y+7)-2 y-11=0
$$

$$
5 y+7=x
$$

$$
25 y^{2}+70 y+49+y^{2}+10 y+14-2 y-11=0
$$

WHEN $y=-1 \quad x=5(-1)+7$

$$
26 y^{2}+78 y+52=0
$$

$$
=2
$$

$$
26\left(y^{2}+3 y+2\right)=0
$$

WHEN $y=-2 \quad x=5(-2)+7$ $26(y+2)(y+1)=0$ $=-3$

$$
y=-2 \quad y=-1
$$

$$
\operatorname{POI}(-3,-2) \text { AND }(2,-1)
$$

(c)

$$
\begin{gathered}
x^{2}+(3 x+10)^{2}-8 x-4(3 x+10)-20=0 \\
x^{2}+9 x^{2}+60 x+100-8 x-12 x-40-20=0 \\
10 x^{2}+40 x+40=0 \quad \text { WHEN } x=-2 \quad y=3(-2)+10 \\
10\left(x^{2}+4 x+4\right)=0 \\
10(x+2)(x+2)=0 \\
x=-2 \\
y=3 x+10 \text { IS A TANGENT. }
\end{gathered}
$$

(d) $x^{2}+(-2 x-5)^{2}-8 x-10(-2 x-5)-8=0$

$$
\begin{gathered}
x^{2}+4 x^{2}+20 x+25-8 x+20 x+50-8=0 \\
5 x^{2}+32 x+67=0
\end{gathered}
$$

$$
b^{2}-4 a c
$$

$$
=32^{2}-4 \times 5 \times 67
$$

$$
=-316
$$

$$
\begin{aligned}
& b^{2}-4 a c<0 \\
& \text { SO NO POINTS OF } \\
& \text { INTERSECTION }
\end{aligned}
$$

Tangents to a Circle

A tangent is a straight line that touches a circle at one point. At this point, the radius of the circle and the straight line are at right angles.

To find the equation of a tangent follow these steps:

* calculate the gradient of the radius (centre to POC)
* calculate m_{\perp}
* substitute POC and m_{\perp} into $y-b=m(x-a)$

Examples

C-13 Find the equation of the tangent to these circles at the given points:
(a) $x^{2}+y^{2}-4 x-2 y-3=0 ;(4,3)$
(b) $\quad(x-2)^{2}+(y-6)^{2}=9 ;(2,3)$
(a) CENTRE $(2,1)$

$$
\begin{array}{rlrl}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & y-b=m(x-a) \\
& =\frac{3-1}{4-2} & y-3=-1(x-4) \\
& =1 & y-3=-x+4 \\
m_{+} & =-1 & y=-x+7
\end{array}
$$

(b) CENTRE $(2,6) \quad y=3$
$m=$ undefined

$$
m_{1}=0
$$

C-14 Show that the line $x+3 y-11=0$ is a tangent to the circle $x^{2}+y^{2}+2 x+12 y-53=0$ and find the point of contact.

$$
\left.\begin{array}{rlr}
x=-3 y+11 & y=3 \quad x+3(3)-11 & =0 \\
(-3 y+11)^{2}+y^{2}+2(-3 y+11)+12 y-53=0 & x+9-11 & =0 \\
9 y^{2}-66 y+121+y^{2}-6 y+22+12 y-53=0 & x-2 & =0 \\
10 y^{2}-60 y+90 & =0 & x
\end{array}\right)
$$

C-15 Find the point of intersection, P, of the tangents to the circle $x^{2}+y^{2}-8 x-4 y+10=0$ at the points $A(1,1)$ and $B(5,5)$ and prove that $A P=B P$.

CENTRE $(4,2)$

$$
\begin{array}{rlrl}
m_{A C} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & m_{B C} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{1-2}{1-4} & & =\frac{5-2}{5-4} \\
& =\frac{1}{3} & =3 \\
y-1 & =\frac{1}{3}(x-1) & y-5 & =3(x-5) \\
y-1 & =\frac{1}{3} x-\frac{1}{3} & y-5 & =3 x-15 \\
y & =\frac{1}{3} x+\frac{2}{3} & y & =3 x-10
\end{array}
$$

$$
\text { PoINT P } \begin{array}{rlrl}
3 x-10 & =\frac{1}{3} x+\frac{2}{3} & y & =3(4)-10 \\
9 x-30 & =x+2 & & =2 \\
8 x & =32 & p(4,2)
\end{array}
$$

$$
x=4
$$

$$
\begin{aligned}
A P & =\sqrt{(1-4)^{2}+(1-2)^{2}} & B P & =\sqrt{(5-4)^{2}+(5-2)^{2}} \\
& =\sqrt{10} & & =\sqrt{10}
\end{aligned}
$$

$$
A P=B P=\sqrt{10}
$$

Intersecting Circles

To determine whether or not two circles intersect we compare the distance between the two centres, d, and both radii. There are five possibilities:

* The circles meet externally at one point. The distance between centres is equal to the sum of the radii.

$$
d=r_{1}+r_{2}
$$

* The circles meet at two points. The distance between centres is less than the sum of the radii.

$$
d<r_{1}+r_{2}
$$

* The circles don't meet. The distance between centres is greater than the sum of the radii.

$$
d>r_{1}+r_{2}
$$

* The circles meet at one point and one circle is inside the other. The distance between centres is equal to the difference of the radii.

$$
d=r_{1}-r_{2}
$$

* The circles don't touch and one circle is inside the other. The distance between centres is less than the difference of the radii.

$$
d<r_{1}-r_{2}
$$

Examples

C-16 Determine how, if at all, these circles intersect:
(a) $x^{2}+y^{2}+16 x+8 y-320=0 ; x^{2}+y^{2}+8 x+2 y-47=0$
(b) $x^{2}+y^{2}-8 x+6 y-11=0 ; x^{2}+y^{2}+4 x-10 y+4=0$
(c) $x^{2}+y^{2}-2 x+4 y-14=0 ; x^{2}+y^{2}+4 x-10 y+27=0$
(a) $C_{1}(-8,-4)$

$$
r_{1}=\sqrt{8^{2}+4^{2}-(-320)}
$$

$$
=\sqrt{400}
$$

$$
=20
$$

$$
\begin{aligned}
c_{2} & =(-4,-1) \\
r_{2} & =\sqrt{(-4)^{2}+(-1)^{2}-(-47)} \\
& =\sqrt{64} \\
& =8
\end{aligned}
$$

$$
=5
$$

(b)

$$
\begin{aligned}
c_{1} & =(4,-3) \\
c_{1} & =\sqrt{(-4)^{2}+(3)^{2}-(-11)} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

Circle C_{2} is inside circle C_{1} and there are no points of contact

$$
c_{2}=(-2,5)
$$

$$
r_{2}=\sqrt{(2)^{2}+(-5)^{2}-4}
$$

$$
=\sqrt{25}
$$

$$
=\sqrt{25}
$$

$$
=5
$$

distance between centres $=\sqrt{(4-(-2))^{2}+((-3)-5)^{2}}$

$$
=\sqrt{36+64}
$$

$$
=10
$$

C_{1} AND C_{2} ARE EXTERNAL ant have two points of INTERSECTION

$$
\text { (c) } \begin{aligned}
c_{1} & =(1,-2) & c_{2} & =(-2,5) \\
r_{1} & =\sqrt{(-1)^{2}+(2)^{2}-(-14)} & r_{2} & =\sqrt{(2)^{2}+(-5)^{2}-27} \\
& =\sqrt{19}(=4.35) & & =\sqrt{2}(=1.41)
\end{aligned}
$$

distance between centres $=\sqrt{(1-(-2))^{2}+((-2)-5)^{2}}$

$$
=\sqrt{9+49}
$$

$$
=\sqrt{58}(-7.61)
$$

$$
\begin{aligned}
& C_{1} \text { AND } C_{2} \text { ARE EXTERNAL } \\
& \text { AND HANE NO PONTS of } \\
& \text { INTERSECTON }
\end{aligned}
$$

$$
.0 .0 \% 0.0 \because 0 \% \text { the Circle } 0: 0.0 \because 0 \% 000 \because \because
$$

EqUATION OF A CIRCLE :

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

where centre (a, b) radius $=r$
OR

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

Where centre $(-g,-f)$ and

$$
\text { radius }=\sqrt{g^{2}+f^{2}-c}
$$

Both Are given in
FORMULAE STET!
two points tangent no points

$b^{2}-4 a c>0 \quad b^{2}-4 a c=0$
 similar to parabolas!

Do TWO CIRCLES TOUCH?
to find out : 1. calculate r_{1} and r_{2}
2. Calculate distance between centres (d)
3. Compare

$$
r_{1}+r_{2}>d
$$

$$
r_{1}+r_{2}=d
$$

$$
r_{1}+r_{2}<d
$$

touch of two points

touch at one point

* two further cases occur when one circle is miside the other $亠 𧘇$

donn touch

$$
r_{1}-r_{2}>r
$$

touch at one point

$$
r_{1}-r_{2}=d
$$

