HIGHER MATHS

Circle

Notes with Examples

Mr Miscandlon Gw13miscandlondavid@glow.sch.uk The equation of a circle with centre (a, b) and radius r, can be given by

$$(x - a)^2 + (y - b)^2 = r^2$$

To find out if a point lies inside, on or outside a circle you must substitute the x and y values into the equation.

If $(x - a)^2 + (y - b)^2 < r^2$ the point lies **inside** the circle. If $(x - a)^2 + (y - b)^2 = r^2$ the point lies **on** the circle. If $(x - a)^2 + (y - b)^2 > r^2$ the point lies **outside** the circle.

Examples

C-01 Write down the equation of the circle with given centre and radius

(a) (2,1); 7 (b) (-4,2); 3 (c) (5,-4); diameter = 3 (a) $(\chi - 2)^{2} + (y - 1)^{2} = 4^{q}$ (b) $(\chi + 4)^{2} + (y - 2)^{2} = q$ (c) $(\chi - 5)^{2} + (y + 4)^{2} = (\frac{3}{2})^{2}$ $(\chi - 5)^{2} + (y + 4)^{2} = \frac{q}{4}$

C-02 State the centre and radius of each of these circles

- (a) $(x + 1)^2 + (y 12)^2 = 40$
- (b) $(x-3)^2 + (y-4)^2 = 225$
- (a) LENTRE (-1,12) RADIUS = 140 = 210
- (b) (ENTRE (3, 4) RADIUS = $\sqrt{225}$ = 15
- **C-03** Find the equation of the circle that passes through the point (2,5) and has a centre of(-1,2).

$$\begin{array}{ccc} CENTRE & (-1,2) & R + D \cup S = \sqrt{(\chi_2 - \chi_1)^2 + (\frac{1}{2} - \frac{1}{2})^2} \\ & = \sqrt{(2 - (-1))^2 + (\frac{1}{2} - 2)^2} \\ \hline \\ \hline \\ CIRCLE & = \sqrt{9 + 9} \\ & = \sqrt{18} \end{array}$$

C-04 Given $(x - 3)^2 + (y + 2)^2 = 100$ is a circle, does A(9,-6) lie inside, on or outside the circle?

SUBSTITUTE $\chi = 9$ y = -6 $(9 - 3)^{2} + (-6 + 2)^{2}$ $= (6)^{2} + (-4)^{2}$ = 36 + 16 = 5252 < 100 So A is <u>INSIDE</u> CIRCLE

General Equation of a Circle

The general equation of a circle is given by

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

with a centre of (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$

This is given in a formulae sheet!

Note: For a circle to exist then $g^2 + f^2 - c > 0$

To find out if a point lies inside, on or outside a circle you must substitute the x and y values into the equation.

If $x^2 + y^2 + 2gx + 2fy + c < 0$ the point lies **inside** the circle. If $x^2 + y^2 + 2gx + 2fy + c = 0$ the point lies **on** the circle. If $x^2 + y^2 + 2gx + 2fy + c > 0$ the point lies **outside** the circle.

Examples

C-05 Do these equations represent circles?

(a)
$$x^2 + y^2 - 6x + 2y - 2 = 0$$

(b)
$$x^2 + y^2 + 2x - 2y + 9 = 0$$

(a)
$$g^{2} + f^{2} - c$$

 $= (-3)^{2} + (1)^{2} - (-2)$
 $= 12$
(b) $g^{2} + f^{2} - c$
 $= (1)^{2} + (-1)^{2} - 9$
 $= -7$
 $= -7$
 $= -7 < D \text{ so THIS IS NOT A CIRCLE}$

C-06 State the centre and radius of each of these circles

(a)
$$x^2 + y^2 - 8x - 10y + 3 = 0$$

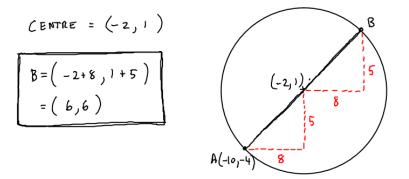
(b)
$$x^2 + y^2 - 4x + 6y - 5 = 0$$

(a)
$$2g = -8$$
 $2f = -10$ $C = 3$
 $g = -4$ $f = -5$

CENTRE (4,5) RADIUS = $\sqrt{(-4)^{2} + (-5)^{2} - 3}$
 $= \sqrt{38}$
(b) $2g = -4$ $2f = 6$ $C = -5$
 $g = -2$ $f = 3$

CENTRE (2,-3) RADIUS = $\sqrt{(-2)^{2} + (3)^{2} - (-5)}$
 $= \sqrt{18}$
 $= 3\sqrt{2}$

C-07 A circle $x^2 + y^2 + 4x - 2y - 84 = 0$ has a diameter *AB*. If A is the point (-10, -4), find the coordinates of B.



C-08 Given $x^2 + y^2 - 8x - 10y - 8 = 0$ is a circle, does A(1, -2) lie inside, on or outside the circle?

 $\chi^{2} + y^{2} - 8\chi - 10y - 8$ = $(1)^{2} + (-2)^{2} - 8(1) - 10(-2) - 8$ = 1 + 4 - 8 + 20 - 8= 9

9 > 0 So POINT A LIES OUTSIDE THE CIRCLE

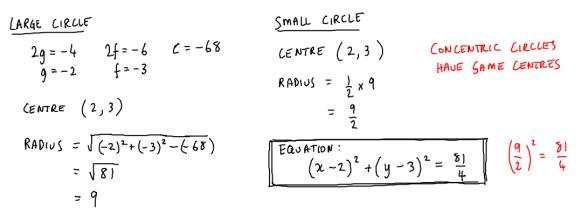
Circle in Context

Examples

C-09 The circle $x^2 + y^2 + 2x - 14y - 15 = 0$ cuts the x-axis at points A and B, and the y-axis at C and D. Calculate the length of AB and CD.

CUTS XAXIS WHEN Y=0	(uts YAXIS WHEN X=0
$\chi^{2} + 2\chi - 15 = D$ $(\chi + 5)(\chi - 3) = D$ $\chi = -5 \qquad \chi = 3$	y2 - 14y - 15 = 0 (y-15)(y+1) = 0 y=15 y=-1
LENGTH AB = 8	LENGTH CD = 16

C-10 Circle C₁ and C₂ are concentric. The larger circle has the equation $x^2 + y^2 - 4x - 6y - 68 = 0$. The radius of the smaller circle is half that of the larger circle. State the equation of the smaller circle.



C-11 Circle C_1 and C_2 are identical. C_1 has a centre (0,0) and a radius of 6 units. Circle C_2 passes through the origin and its centre is on the *y*-axis. State both possible equations for circle C_2 .



There are three possibilities for the point of intersection between a circle and a straight line:

- * the circle and line intersect at two points
- * the circle and line intersect at one point (tangent)
- * the circle and line do not intersect

This is similar to quadratic roots: two distinct roots, one repeated root and no real roots.

To find points of intersection we substitute the equation of the straight line into the circle and solve.

Examples

C-12 Find the points of intersection of these circles and lines

(a)
$$x^{2} + y^{2} = 10; y = 3$$

(b) $x^{2} + y^{2} + 2x - 2y - 11 = 0; 5y - x + 7 = 0$
(c) $x^{2} + y^{2} - 8x - 4y - 20 = 0; y = 3x + 10$
(d) $x^{2} + y^{2} - 8x - 10y - 8 = 0; y = -2x - 5$
(a) $x^{2} + (3)^{2} = 10$
 $x^{2} + 9 = 10$
 $x^{2} + 9 = 10$
 $x^{2} + 1 = 10$
 $y^{2} = 1$
(b) $5y - x + 7 = 0$
 $5y + 7 = 2x$
 $25y^{2} + 70y + 49 + y^{2} + 10y + 14 - 2y - 11 = 0$
WHEN $Y = -1$ $y = 5(-1) + 7$
 $z = 2$
WHEN $Y = -2$ $y = 5(-2) + 7$
 $z = -3$
 $y = -2$ $y = -1$
PoI $(-3, -2)$ AND $(2, -1)$

(c)
$$x^{2} + (3x + 10)^{2} - 8x - 4(3x + 10) - 20 = 0$$

 $y^{2} + 9x^{2} + 60x + 100 - 8x - 12x - 40 - 20 = 0$
 $10x^{2} + 40x + 40 = 0$ when $x = -2$ $y = 3(-2) + 10$
 $10(x^{2} + 4x + 4) = 0$
 $10(x + 2)(x + 2) = 0$
 $x = -2$
 $y = 3x + (0 \text{ is A TRNGENT})$
(d) $x^{2} + (-2x - 5)^{2} - 8x - 10(-2x - 5) - 8 = 0$
 $x^{2} + 4x^{2} + 20x + 25 - 8x + 20x + 50 - 8 = 0$
 $5x^{2} + 32x + 67 = 0$
 $b^{2} - 4ac$
 $= 32^{2} - 4x5 \times 67$
 $= -316$
 $b^{2} - 4ac < 0$
 $5x + 0 + 5x + 0$

A tangent is a straight line that touches a circle at one point. At this point, the radius of the circle and the straight line are at right angles.

To find the equation of a tangent follow these steps:

- * calculate the gradient of the radius (centre to POC)
- * calculate m_{\perp}
- * substitute POC and m_{\perp} into y b = m(x a)

Examples

- C-13 Find the equation of the tangent to these circles at the given points:
 - (a) $x^2 + y^2 4x 2y 3 = 0$; (4,3)
 - (b) $(x-2)^2 + (y-6)^2 = 9; (2,3)$
 - (a) (ENTRE (2,1)

$$m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} \qquad y - b = m(x - a)$$

$$= \frac{3 - 1}{4 - 2} \qquad y - 3 = -1(x - 4)$$

$$= 1 \qquad y - 3 = -x + 4$$

$$= 1 \qquad y - 3 = -x + 4$$

$$= -x + 7$$

(b) CENTRE
$$(2,6)$$
 $y=3$
 $M = Undefined$

C-14 Show that the line x + 3y - 11 = 0 is a tangent to the circle $x^2 + y^2 + 2x + 12y - 53 = 0$ and find the point of contact.

$$x = -3y + 11$$

$$(-3y + 11)^{2} + y^{2} + 2(-3y + 11) + 12y - 53 = 0$$

$$y = 3 \qquad x + 3(3) - 11 = 0$$

$$x + 9 - 11 = 0$$

$$y = -2 = 0$$

$$y = -2$$

C-15 Find the point of intersection, *P*, of the tangents to the circle $x^2 + y^2 - 8x - 4y + 10 = 0$ at the points *A*(1,1) and *B*(5,5) and prove that *AP* = *BP*.

CENTRE (4,2)
$M_{AC} = \frac{y_2 - y_1}{x_2 - x_1}, \qquad M_{BC} = \frac{y_2 - y_1}{x_2 - x_1}$
= 1 - 2 $= 5 - 21 - 4$ $5 - 4$
$=$ $\frac{1}{3}$ $=$ 3
$y - 1 = \frac{1}{3}(x - 1)$ $y - 5 = 3(x - 5)$
$y - 1 = \frac{1}{3}x - \frac{1}{3}$ y - 5 = 3x - 15 y = 3x - 10
$y = \frac{1}{3}x + \frac{2}{3}$
$\frac{P_{01NT} P}{2x - 10} = \frac{1}{3}x + \frac{2}{3} \qquad y = 3(4) - 10 = \frac{1}{3}x + \frac{2}{3} \qquad z = 1$
$9_{2} - 30 = 2 + 2$ P(4,2)
$8 \varkappa = 32$ $\varkappa = 4$
$AP = \sqrt{(1-4)^{2} + (1-2)^{2}} \qquad BP = \sqrt{(5-4)^{2} + (5-2)^{2}}$
$=\sqrt{10}$ $=\sqrt{10}$
$P = BP = \sqrt{10}$

Intersecting Circles

To determine whether or not two circles intersect we compare the distance between the two centres, d, and both radii. There are five possibilities:

* The circles meet externally at one point. The distance between centres is equal to the sum of the radii.

$$d = r_1 + r_2$$

* The circles meet at two points. The distance between centres is less than the sum of the radii.

$$d < r_1 + r_2$$

* The circles don't meet. The distance between centres is greater than the sum of the radii.

$$d > r_1 + r_2$$

* The circles meet at one point and one circle is inside the other. The distance between centres is equal to the difference of the radii.

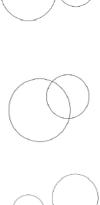
$$d = r_1 - r_2$$

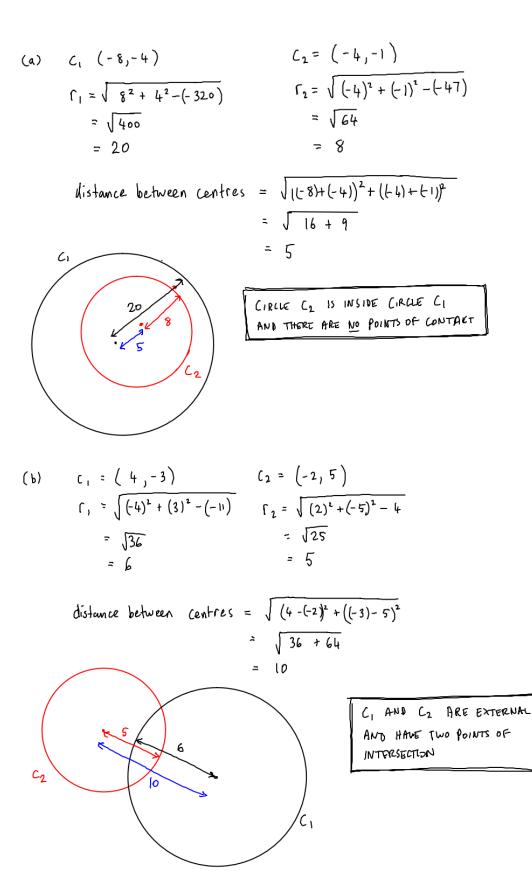
* The circles don't touch and one circle is inside the other. The distance between centres is less than the difference of the radii.

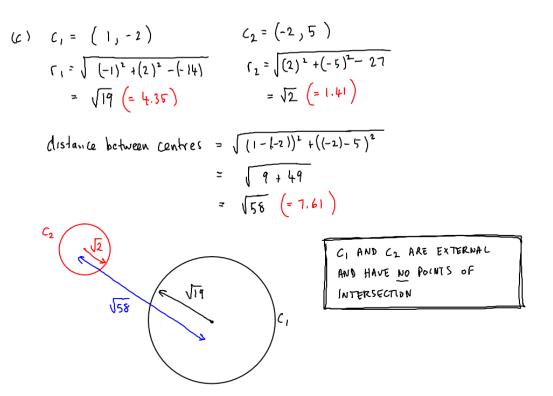
$$d < r_1 - r_2$$

Examples

- C-16 Determine how, if at all, these circles intersect:
 - (a) $x^2 + y^2 + 16x + 8y 320 = 0; x^2 + y^2 + 8x + 2y 47 = 0$
 - (b) $x^2 + y^2 8x + 6y 11 = 0; x^2 + y^2 + 4x 10y + 4 = 0$
 - (c) $x^2 + y^2 2x + 4y 14 = 0; x^2 + y^2 + 4x 10y + 27 = 0$







Summary

