HIGHER MATHS
 2017 Exam

Question Paper with Solutions

2017 Non Calculator Paper

1. Functions f and g are defined on suitable domains by $f(x)=5 x$ and $g(x)=2 \cos x$.
(a) Evaluate $f(g(0))$. 1
(b) Find an expression for $g(f(x))$.
(a) $f(g(x))=f(2 \cos x)$
$=5(2 \cos x)$
$=10 \cos x$

$$
\begin{aligned}
f(g(0)) & =10 \cos 0 \\
& =10 \times 1 \\
f(g(0)) & =10
\end{aligned}
$$

(b) $g(f(x))=g(5 x)$
2. The point $\mathrm{P}(-2,1)$ lies on the circle $x^{2}+y^{2}-8 x-6 y-15=0$.

Find the equation of the tangent to the circle at P.
centre $(4,3)$

$$
\begin{array}{rlr}
m_{\text {PADUS }} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & m_{1} \times m_{2}=-1 \\
& =\frac{3-1}{4-(-2)} & \\
& & y-b=-3(x-a) \\
& =\frac{2}{6} & y-1=-3(x+2) \\
& & y-1=-3 x-6 \\
& &
\end{array}
$$

3. Given $y=(4 x-1)^{12}$, find $\frac{d y}{d x}$.

$$
\begin{aligned}
& y=(4 x-1)^{12} \\
& \frac{d y}{d x}=12(4 x-1)^{11} \times 4 \\
& \frac{d y}{d x}=48(4 x-1)^{11}
\end{aligned}
$$

4. Find the value of k for which the equation $x^{2}+4 x+(k-5)=0$ has equal roots.

$$
\text { FOR EQuAL Roots } \begin{aligned}
b^{2}-4 a c=0 \\
\qquad \begin{aligned}
(4)^{2}-(4 \times 1 \times(k-5)) & =0 \\
16-(4(k-5)) & =0 \\
16-4 k+20 & =0 \\
-4 k & =-36 \\
k & =9
\end{aligned}
\end{aligned}
$$

5. Vectors \mathbf{u} and \mathbf{v} are $\left(\begin{array}{r}5 \\ 1 \\ -1\end{array}\right)$ and $\left(\begin{array}{r}3 \\ -8 \\ 6\end{array}\right)$ respectively.
(a) Evaluate u.v.
(b)

Vector w makes an angle of $\frac{\pi}{3}$ with \mathbf{u} and $|\mathbf{w}|=\sqrt{3}$.
Calculate u.w.
(b) $|\underline{u}|=\sqrt{(5)^{2}+(1)^{2}+(-1)^{2}}$
$=\sqrt{27}$
$\begin{aligned} & =15-8-6 \\ u \cdot \underline{v} & =1\end{aligned}$

$$
\begin{aligned}
\underline{u} \cdot \underline{w} & =|\underline{u}||\underline{w}| \cos \theta \\
& =\sqrt{27} \times \sqrt{3} \times \cos \frac{\pi}{3} \\
& =\sqrt{81} \times \frac{1}{2}
\end{aligned}
$$

$$
\underline{a} \cdot \underline{w}=\frac{q}{2}
$$

6. A function, h, is defined by $h(x)=x^{3}+7$, where $x \in \mathbb{R}$.

Determine an expression for $h^{-1}(x)$.

$$
\begin{gathered}
y=x^{3}+7 \\
x^{3}+7=y \\
x^{3}=y-7 \\
x=\sqrt[3]{y-7} \\
h^{-1}(x)=\sqrt[3]{x-7}
\end{gathered}
$$

7. $A(-3,5), B(7,9)$ and $C(2,11)$ are the vertices of a triangle.

Find the equation of the median through C .

$$
\begin{aligned}
Q=m_{1} D_{A B} & =\left(\frac{(-3)+7}{2}, \frac{5+9}{2}\right) \\
& =(2,7) \\
m_{C Q} & =\frac{y_{2}-y_{1}}{x_{1}-x_{1}} \\
& =\frac{7-11}{2-2} \\
& =\frac{-4}{0}=\text { VERTICAL LINE }
\end{aligned}
$$

8. Calculate the rate of change of $d(t)=\frac{1}{2 t}, t \neq 0$, when $t=5$.

$$
\begin{aligned}
d(t) & =\frac{1}{2 t} \\
& =\frac{1}{2} t^{-1} \\
d^{\prime}(t) & =-\frac{1}{2} t^{-2} \\
& =-\frac{1}{2 t^{2}} \\
d^{\prime}(5) & =-\frac{1}{2(5)^{2}} \\
d^{\prime}(5) & =-\frac{1}{50}
\end{aligned}
$$

9. A sequence is generated by the recurrence relation $u_{n+1}=m u_{n}+6$ where m is a constant.
(a) Given $u_{1}=28$ and $u_{2}=13$, find the value of m.
(b) (i) Explain why this sequence approaches a limit as $n \rightarrow \infty$. 1
(ii) Calculate this limit.
(a) $\quad u_{n+1}=m u_{n}+b$
$13=28 m+6$
$7=28 \mathrm{~m}$
$m=\frac{7}{28}$
$m=\frac{1}{4}$
(b) (i) \square
(ii)
$L=\frac{1}{4} L+6$
$\frac{3}{4} L=6$
$3 L=24$
$L=8$
10. Two curves with equations $y=x^{3}-4 x^{2}+3 x+1$ and $y=x^{2}-3 x+1$ intersect as shown in the diagram.

(a) Calculate the shaded area.

The line passing through the points of intersection of the curves has equation $y=1-x$.

(b) Determine the fraction of the shaded area which lies below the line $y=1-x$.
(a) $A R E A=\int_{0}^{2} U P P E R-L O W E R$
(b) AREA $=\int_{0}^{2}$ UPPER - LOWER
$=\int_{0}^{2}\left(x^{3}-4 x^{2}+3 x+1\right)-\left(x^{2}-3 x+1\right) d x$
$=\int_{0}^{2} x^{3}-5 x^{2}+6 x d x$
$=\left[\frac{x^{4}}{4}-\frac{5 x^{3}}{3}+3 x^{2}\right]_{0}^{2}$
$=\left(\frac{(2)^{4}}{4}-\frac{5(2)^{3}}{3}+3(2)^{2}\right)-(0)$
$=4-\frac{40}{3}+12$
AREA $=\frac{8}{3}$ units 2
$=\int_{0}^{2}(1-x)-\left(x^{2}-3 x+1\right) d x$
$=\int_{0}^{2}-x^{2}+2 x d x$
$=\left[-\frac{x^{3}}{3}+x^{2}\right]_{0}^{2}$
$=\left(-\frac{(2)^{3}}{3}+(2)^{2}\right)-(0)$
$=-\frac{8}{3}+4$
$=\frac{4}{3}$ units $^{2} \quad \frac{4}{3}$ is $\frac{1}{2}$ of $\frac{8}{3}$

```
SO HAlf SHADED AREA
    IS BELOW THE LINE
```

11. A and B are the points $(-7,2)$ and $(5, a)$.

AB is parallel to the line with equation $3 y-2 x=4$.
Determine the value of a.
$3 y-2 x=4$
$3 y=2 x+4$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\frac{a-2}{12}=\frac{2}{3}$

$$
y=\frac{2}{3} x+\frac{4}{3}
$$

$=\frac{a-2}{5-(-])}$
$a-2=12 \times \frac{2}{3}$
$m=\frac{2}{3}$

$$
=\frac{a-2}{12}
$$

$$
a-2=8
$$

$$
a=10
$$

12. Given that $\log _{a} 36-\log _{a} 4=\frac{1}{2}$, find the value of a.

$$
\begin{aligned}
\log _{a} 36-\log _{a} 4 & =\frac{1}{2} \\
\log _{a}\left(\frac{36}{4}\right) & =\frac{1}{2} \\
\log _{a} 9 & =\frac{1}{2} \\
a^{1 / 2} & =9 \\
a & =81
\end{aligned}
$$

13. Find $\int \frac{1}{(5-4 x)^{\frac{1}{2}}} d x, x<\frac{5}{4}$.

$$
\begin{aligned}
& \left.\int \frac{1}{(5-4 x}\right)^{1 / 2} d x \\
= & \int(5-4 x)^{-1 / 2} d x \\
= & \frac{(5-4 x)^{1 / 2}}{1 / 2} \times \frac{1}{-4}+C \\
= & \frac{-(5-4 x)^{1 / 2}}{2}+c
\end{aligned}
$$

14. (a) Express $\sqrt{3} \sin x^{\circ}-\cos x^{\circ}$ in the form $k \sin (x-a)^{\circ}$, where $k>0$ and $0<a<360$.
(b) Hence, or otherwise, sketch the graph with equation $y=\sqrt{3} \sin x^{\circ}-\cos x^{\circ}, 0 \leq x \leq 360$.

Use the diagram provided in the answer booklet.
(a) $\sqrt{3} \sin x-\cos x=k \sin ^{-}(x-a)$
$=k \sin x \cos n-k \cos x \sin a$
$-k \sin a=-1$
$k \sin a=1$
$k \cos a=\sqrt{3}$
$\tan a=\frac{1}{\sqrt{3}}$

$$
k=\sqrt{(1)^{2}+(\sqrt{3})^{2}}
$$

$=2$
$\sqrt{3} \sin x-\cos x=2 \sin \left(x-30^{\circ}\right)$

$$
\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=30^{\circ}
$$

$$
a=30^{\circ}
$$

(b)

$-y=2 \sin x$
$-y=2 \sin (x-30)$
15. A quadratic function, f, is defined on \mathbb{R}, the set of real numbers.

Diagram 1 shows part of the graph with equation $y=f(x)$.
The turning point is $(2,3)$.
Diagram 2 shows part of the graph with equation $y=h(x)$.
The turning point is $(7,6)$.

Diagram 1

Diagram 2
(a) Given that $h(x)=f(x+a)+b$.

Write down the values of a and b.
(b) It is known that $\int_{1}^{3} f(x) d x=4$.

Determine the value of $\int_{6}^{8} h(x) d x$.
(c) Given $f^{\prime}(1)=6$, state the value of $h^{\prime}(8)$.
(a) $h(x)=f(x-5)+3$

$$
a=-5 \quad b=3
$$

(b)

(C)

$$
\begin{array}{r}
f^{\prime}(1)=6, f^{\prime}(3)=-6 \\
h^{\prime}(8)=-6
\end{array}
$$

2017 Calculator Paper

1. Triangle $A B C$ is shown in the diagram below.

The coordinates of B are $(3,0)$ and the coordinates of C are $(9,-2)$.
The broken line is the perpendicular bisector of BC .

(a) Find the equation of the perpendicular bisector of BC .
(b) The line AB makes an angle of 45° with the positive direction of the x-axis.

Find the equation of AB .
(c) Find the coordinates of the point of intersection of $A B$ and the perpendicular bisector of BC .
(a) $\begin{aligned} Q=m: d_{B C} & =\left(\frac{3+}{2}\right. \\ & =(6 \\ m_{1} \times m_{2} & =-1 \\ m_{1} & =3\end{aligned}$
$y-b=m(x-a)$
$y+1=3(x-6)$
$y=3 x-19$
(c) $P \circ I$

$$
\begin{aligned}
3 x-19 & =x-3 \\
3 x-x & =-3+19 \\
2 x & =16 \\
x & =8
\end{aligned}
$$

2. (a) Show that $(x-1)$ is a factor of $f(x)=2 x^{3}-5 x^{2}+x+2$.
(b) Hence, or otherwise, solve $f(x)=0$.

3. The line $y=3 x$ intersects the circle with equation $(x-2)^{2}+(y-1)^{2}=25$.

Find the coordinates of the points of intersection.

$$
\begin{aligned}
&(x-2)^{2}+(y-1)^{2}=25 \\
&(x-2)^{2}+(3 x-1)^{2}=25 \\
& x^{2}-4 x+4+9 x^{2}-6 x+1=25 \\
& 10 x^{2}-10 x-20=0 \\
& 10\left(x^{2}-x-2\right)=0 \\
& 10(x-2)(x+1)=0 \\
& x=2 \quad x=-1 \\
& y=3(2) \quad y=3(-1) \\
&=6 \quad=-3 \\
& \text { POI (2,6)AND }(-1,-3)
\end{aligned}
$$

4. (a) Express $3 x^{2}+24 x+50$ in the form $a(x+b)^{2}+c$.
(b) Given that $f(x)=x^{3}+12 x^{2}+50 x-11$, find $f^{\prime}(x)$.
(c) Hence, or otherwise, explain why the curve with equation $y=f(x)$ is strictly increasing for all values of x.

1a) $3 x^{2}+24 x+50$
$=3\left[x^{2}+8 x\right]+50$
$=3\left[(x+4)^{2}-16\right]+50$
$=3(x+4)^{2}-48+50$ $=3(x+4)^{2}+2$
(b) $f(x)=x^{3}+12 x^{2}+50 x-11$

$$
f^{\prime}(x)=3 x^{2}+24 x+50
$$

(c) $f^{\prime}(x)=3 x^{2}+24 x+50$

$$
=3(x+4)^{2}+2
$$

Min VALUE OF $f^{\prime}(x)=2$
So function Always
INCREASING
5. In the diagram, $\overrightarrow{P R}=9 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}$ and $\overrightarrow{R Q}=-12 \mathbf{i}-9 \mathbf{j}+3 \mathbf{k}$.

(a) Express $\overrightarrow{\mathrm{PQ}}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.

The point S divides $Q R$ in the ratio 1:2.
(b) Show that $\overrightarrow{P S}=\mathbf{i}-\mathbf{j}+4 \mathbf{k}$.
(c) Hence, find the size of angle QPS.

6. Solve $5 \sin x-4=2 \cos 2 x$ for $0 \leq x<2 \pi$.

$$
\begin{array}{lll}
5 \sin x-4=2 \cos 2 x & \sin x=\frac{3}{4} & \text { sin } x=-2 \\
5 \sin x-4=2\left(1-2 \sin ^{2} x\right) & \sin ^{-1}\left(\frac{3}{4}\right) & x=48.6^{\circ}, 131.4^{\circ} \\
5 \sin x-4=2-4 \sin ^{2} x & =48.6^{\circ} & x=0.84,2.29 \\
4 \sin ^{2} x+5 \sin x-6=0 & \frac{5}{5} \left\lvert\, \frac{A^{\circ}}{\text { No sols }}\right. \\
(4 \sin x-3)(\sin x+2)=0 & \\
\sin x=\frac{3}{4} \quad \sin x=-2 & &
\end{array}
$$

7. (a) Find the x-coordinate of the stationary point on the curve with equation $y=6 x-2 \sqrt{x^{3}}$.
(b) Hence, determine the greatest and least values of y in the interval $1 \leq x \leq 9$.
(a) $\quad y=6 x-2 \sqrt{x^{3}}$

$$
=6 x-2 x^{3 / 2}
$$

$$
\frac{d y}{d x}=6-3 x^{1 / 2}
$$

$$
=6-3 \sqrt{x}
$$

for $\operatorname{SP} \frac{d y}{d x}=0$
$6-3 \sqrt{x}=0$
$3(2-\sqrt{x})=0$

$$
2-\sqrt{x}=0
$$

$$
\sqrt{x}=2
$$

$\underset{\text { TABLE }}{\text { NATURE }} \quad \frac{x}{x} \rightarrow 4 \rightarrow-$
$x=4$ is A max jp
(b) WHEN $x=1$

$$
\begin{aligned}
& \text { WHEN } x=1 \\
& y=6(1)-2 \sqrt{(1)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { WHEN } x=4 \\
& =6(4)-2 \sqrt{(4)^{3}} \\
& =8 \\
& \text { MAX VALUE }
\end{aligned} \begin{aligned}
& \text { WHEN } x=9 \\
& y=6(9)-2 \sqrt{(9)^{3}} \\
& =0 \\
& \text { MIN VALUE }
\end{aligned}
$$

8. Sequences may be generated by recurrence relations of the form $u_{n+1}=k u_{n}-20, u_{0}=5$ where $k \in \mathbb{R}$.
(a) Show that $u_{2}=5 k^{2}-20 k-20$.
(b) Determine the range of values of k for which $u_{2}<u_{0}$.
(a) $u_{1}=5 k-20$
(b) $\quad u_{2}<u_{0}$
$u_{2}=k(5 k-20)-20$
$5 k^{2}-20 k-20<5$
$5 k^{2}-20 k-25<0$

$5\left(k^{2}-4 k-5\right)<0$
$5(k-5)(k+1)<0$
$-1<k<5$
9. Two variables, x and y, are connected by the equation $y=k x^{n}$.

The graph of $\log _{2} y$ against $\log _{2} x$ is a straight line as shown.

Find the values of k and n.

$$
\begin{array}{rlrl}
y & =k x^{n} & n & =m \\
\log _{2} y & =\log _{2} k x^{n} & & \log _{2} k=c \\
& =\log _{2} k+\log _{2} x^{n} & n=\frac{3-0}{0-(-12)} & \log _{2} k=3 \\
& =\log _{2} k+n \log _{2} x & & =\frac{3}{12} \\
& =n \log _{2} x+\log _{2} k & n=-\frac{1}{4} &
\end{array}
$$

10. (a) Show that the points $A(-7,-2), B(2,1)$ and $C(17,6)$ are collinear.

Three circles with centres A, B and C are drawn inside a circle with centre D as shown.

The circles with centres A, B and C have radii $r_{\mathrm{A}}, r_{\mathrm{B}}$ and r_{C} respectively.

- $r_{\mathrm{A}}=\sqrt{10}$
- $r_{\mathrm{B}}=2 r_{\mathrm{A}}$
- $r_{\mathrm{C}}=r_{\mathrm{A}}+r_{\mathrm{B}}$
(b) Determine the equation of the circle with centre D .
(a) $M_{A B}=\frac{y_{1}-y_{1}}{x_{2}-x_{1}}$
$m_{B C}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
(b) $\begin{aligned} & \text { DiAmeter of Circle } D \\ &= 2 r_{A}+2 r_{B}+2 r_{C}\end{aligned}$
$=\frac{1-(-2)}{2-(-7)}$
$=\frac{6-1}{17-2}$
$=2 r_{A}+2\left(2 r_{A}\right)+2\left(r_{A}+r_{B}\right)$

$=\frac{3}{9}$
$=\frac{5}{15}$
$=2 r_{A}+4 r_{A}+2 r_{2}+2 r_{B}$

$$
D(8,3)
$$

$=\frac{1}{3}$
$=\frac{1}{3}$

$$
\begin{aligned}
& m_{A B}=m_{B C} \text { So LINES ARE PARAMEL } \\
& \text { SHARE Common Point (B) So } A, B \& C \\
& \text { ARE Collinear }
\end{aligned}
$$

$$
\begin{aligned}
& =2 r_{A}+4 r_{A}+2 r_{A}+4 r_{A} \\
& =12 r_{A} \\
& =12 \sqrt{10} \\
& r_{D}=6 \sqrt{10}
\end{aligned}
$$

Crate D

$$
\begin{aligned}
& (x-8)^{2}+(y-3)=(6 \sqrt{10})^{2} \\
& (x-8)^{2}+(y-3)^{2}=360
\end{aligned}
$$

11. (a) Show that $\frac{\sin 2 x}{2 \cos x}-\sin x \cos ^{2} x=\sin ^{3} x$, where $0<x<\frac{\pi}{2}$.
(b) Hence, differentiate $\frac{\sin 2 x}{2 \cos x}-\sin x \cos ^{2} x$, where $0<x<\frac{\pi}{2}$.
(a)
$\frac{\sin 2 x}{2 \cos x}-\sin x \cos ^{2} x$
(b) $y=\frac{5 m 2 x}{2 \cos x}-\sin x \cos ^{2} x$

$$
=\sin ^{-3} x
$$

$=\frac{2 \sin x \cos x}{2 \cos x}-\sin x \cos ^{2} x$

$$
=(\sin x)^{3}
$$

$=\sin x-\sin x \cos ^{2} x$

$$
\frac{d y}{d x}=3(\sin x)^{2} \times \cos x
$$

$=\sin x\left(1-\cos ^{2} x\right)$

$$
\frac{d y}{d x}=3 \sin ^{2} x \cos x
$$

$=\sin x \sin ^{2} x$
$=\sin ^{3} x$ AS REQU IRED

