HIGHER MATHS

Wave Function

Notes with Examples

The Wave Function

The wave function is the addition (or difference) of two waves into a single wave.
(1.) $y=\sin x$
(1) $y=\cos x$
(1) $y=\sin x+\cos x$
$y=\sqrt{2} \sin (x+45)$

So $a \sin x+b \cos x$ can be written in the form of $k \sin (x \pm \alpha)$ ork $\cos (x \pm \alpha)$.

To solve these types of questions we follow these steps.

* compare $a \sin x+\mathrm{b} \cos x$ with the expanded from of $k \sin (x \pm \alpha)$ or
$k \cos (x+\alpha)$
* \quad list the values of $k \sin \propto$ and $k \cos \propto$
* \quad calculate k
* calculate \propto
* \quad state the answer in form $k \sin (x \pm \alpha)$ or $k \cos (x \pm \alpha)$

Worked Example
Express $2 \sin x-5 \cos x$ in the form $k \sin (x-\alpha)$, where $k>0$ and $0^{\circ} \leq \alpha \leq 360^{\circ}$

$$
\begin{aligned}
2 \sin x-5 \cos x & =k \sin (x-\alpha) \\
& =k \sin x \cos \alpha-k \cos x \sin \alpha
\end{aligned}
$$

$$
-k \sin \alpha=-5
$$

$$
\alpha=\tan ^{-1}\left(\frac{5}{2}\right)
$$

$$
k=\sqrt{2^{2}+5^{2}}
$$

$$
k \sin \alpha=5
$$

$$
k \cos \alpha=2
$$

$$
=68.2^{\circ}
$$

$$
=\sqrt{29}
$$

v	$A V$
T	C

$$
2 \sin x-5 \cos x=\sqrt{29} \sin (x-68.2)^{\circ}
$$

Examples
W-01 Express $\cos x-3 \sin x$ in the form $k \cos (x-\propto), 0^{\circ} \leq \propto \leq 360^{\circ}$.

$$
\begin{aligned}
\underline{\cos x}-3 \sin x & =k \cos (x-\alpha) \\
& =k \underline{\cos x} \cos \alpha+k \underline{\sin x} \sin \alpha
\end{aligned}
$$

$$
\begin{aligned}
& k \sin \alpha=-3 \\
& k \cos \alpha=1 \\
& \tan \alpha=\frac{-3}{1}=-3 \\
& \tan ^{-1}(3)=71.6^{\circ} \\
& k=\sqrt{(-3)^{2}+(1)^{2}} \\
& =\sqrt{10} \\
& \cos x-3 \sin x=\sqrt{10} \cos (x-288.4)^{\circ} \\
& \alpha=360-71.6 \\
& =288.4^{\circ}
\end{aligned}
$$

W-02 Write $4 \cos x-3 \sin x$ in the form $k \sin (x-\alpha), 0^{\circ} \leq \propto \leq 360^{\circ}$.

$$
\begin{array}{rlrl}
4 \cos x-3 \underline{\sin x} & =k \sin (x-\alpha) \\
& =k \sin x \cos \alpha-k \cos x \sin \alpha \\
-k \sin \alpha=4 \\
k \sin \alpha=-4 & & \\
k \cos \alpha=-3 & 5 & A & k=\sqrt{(-4)^{2}+(-3)^{2}} \\
\tan \alpha=\frac{-4}{-3}=\frac{4}{3} & & =5 \\
\tan ^{-1}\left(\frac{4}{3}\right)=53.1^{\circ} & & C & \\
& & =180+53.1 & 4 \cos x-3 \sin x=5 \sin (x-233.1)^{\circ} \\
& =233.1^{\circ}
\end{array}
$$

W-03 Express $\sin x-\cos x$ in the form $k \sin (x+\propto), 0^{\circ} \leq \propto \leq 360^{\circ}$.

$$
\begin{aligned}
\underline{\sin x}-\cos x & =k \sin (x+\alpha) \\
& =k \sin x \cos \alpha+k \underline{\cos x \sin \alpha}
\end{aligned}
$$

$$
\begin{aligned}
& k \sin \alpha=-1 \\
& k \cos \alpha=1 \\
& \tan \alpha=\frac{-1}{1}=-1 \\
& \tan ^{-1}(1)=45^{\circ}
\end{aligned}
$$

$\checkmark S$	A
$v T$	$C \quad \bar{v}$

$$
\begin{aligned}
k & =\sqrt{(1)^{2}+(-1)^{2}} \\
= & \sqrt{2} \\
\sin x & -\cos x=\sqrt{2} \sin (x-315)^{\circ}
\end{aligned}
$$

$$
\alpha=360-45
$$

$$
=315^{\circ}
$$

The Wave Function with Radians and Compound Angles

We can use the same method as previously described to work in radians and with compound angles.

Examples

W-04 Write $5 \cos 3 x-12 \sin 3 x$ in the form $k \sin (3 x-\propto), 0^{\circ} \leq \propto \leq 360^{\circ}$.

$$
\begin{aligned}
& 5 \underline{\cos 3 x}-12 \underline{\underline{\sin 3 x}}=k \sin (3 x-\alpha) \\
& =k \sin 3 x \cos \alpha-k \cos 3 x \sin \alpha \\
& -k \sin \alpha=5 \\
& k \sin \alpha=-5 \\
& k \cos \alpha=-12 \\
& \tan \alpha=\frac{-5}{-12}=\frac{5}{12} \\
& \tan ^{-1}\left(\frac{5}{12}\right)=22.6^{\circ} \quad \alpha=180+22.6 \\
& =202.6^{\circ} \\
& k=\sqrt{(-5)^{2}+(-12)^{2}} \\
& =13 \\
& 5 \cos 3 x-12 \sin 3 x=13 \sin (3 x-202.6)^{\circ}
\end{aligned}
$$

W-05 Express $2 \sqrt{3} \cos x+2 \sin x$ in the form $k \sin (x+\alpha), 0 \leq \propto \leq 2 \pi$.

$$
\begin{aligned}
& 2 \sqrt{3} \underline{\cos x}+2 \underline{\sin x}=k \sin (x-\alpha) \\
& =k \sin x \cos \alpha-k \cos x \sin \alpha \\
& -k \sin \alpha=2 \sqrt{3} \\
& k \sin \alpha=-2 \sqrt{3} \\
& k \cos \alpha=2 \\
& \tan \alpha=\frac{-2 \sqrt{3}}{2}=-\sqrt{3} \\
& \begin{array}{c|c}
S & A \\
\hline T & C_{V N}
\end{array} \\
& \alpha=2 \pi-\frac{\pi}{3} \quad 2 \sqrt{3} \cos x+2 \sin x=4 \sin \left(x-\frac{5 \pi}{3}\right) \\
& \begin{aligned}
\alpha & =2 \pi-\frac{\pi}{3} \\
& =\frac{6 \pi}{3}-\frac{\pi}{3}
\end{aligned} \\
& =\frac{5 \pi}{3}
\end{aligned}
$$

Maxima and Minima of $a \sin x \pm b \cos x$

To calculate the maximum and minimum value of $a \sin x+b \cos x$ we first have to write it in the form $k \sin (x \pm \alpha)$ or $k \cos (x \pm \alpha)$. Then we use the single function to determine the max and min values and when they occur (think back to trig graphs).

Examples

W-06 State the maximum and minimum values of $y=4 \cos x+3 \sin x$ for $0^{\circ} \leq \propto \leq 360^{\circ}$, and the corresponding values of x.

$$
\begin{aligned}
& 4 \cos x+3 \sin x=k \sin (x+\alpha) \\
& =k \sin x \cos \alpha+k \cos x \sin \alpha \\
& k \sin \alpha=4 \\
& k \cos \alpha=3 \\
& \tan x=\frac{4}{3} \\
& \begin{array}{c|c}
S & A シ \\
\hline T & C
\end{array} \\
& \begin{aligned}
k & =\sqrt{4^{2}+3^{2}} \\
& =5
\end{aligned} \\
& 4 \cos x+3 \sin x=5 \sin (x+53.1)^{\circ} \\
& \tan ^{-1}\left(\frac{4}{3}\right)=53.1^{\circ} \\
& \alpha=53.1^{\circ}
\end{aligned}
$$

W-07 State the maximum and minimum values of $y=7 \sin x+4 \cos x+12$ for $0^{\circ} \leq \alpha \leq 360^{\circ}$, and the corresponding values of x.

$$
\begin{aligned}
& 7 \underline{\sin x}+4 \underline{\cos x}=k \cos (x-\alpha) \\
& =k \cos x \cos \alpha+k \sin x \sin \alpha
\end{aligned}
$$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{7}{4}\right)=60.3 \quad \alpha=60.3 \\
& y=7 \sin x+4 \cos x+12 \\
& =\sqrt{65} \cos (x-60.3)+12 \\
& \max =\sqrt{65}+12 @ x-60.3=0 \\
& \text { MIN }=-\sqrt{65}+12 \subset \quad x-60.3=60.30180 \\
& x=240.3^{\circ}
\end{aligned}
$$

We can use the wave function to solve trigonometric equations.

Examples

W-08 Solve $\cos x-3 \sin x=3$ for $0^{\circ} \leq x \leq 360^{\circ}$.

$$
\begin{aligned}
& \cos x-3 \sin x=k \cos (x+\alpha) \\
& =k \cos x \cos \alpha-k \sin x \sin \alpha \\
& -k \sin \alpha=-3 \\
& k \sin \alpha=3 \\
& k \cos \alpha=1 \\
& \tan \alpha=\frac{3}{1}=3 \\
& \begin{array}{c|c}
{ }^{\prime} S & A \\
\hline T & C_{v}
\end{array} \\
& k=\sqrt{(-3)^{2}+1^{2}} \\
& =\sqrt{10} \\
& \cos x-3 \sin x=\sqrt{10} \cos (x+71.6)^{\circ} \\
& \tan ^{-1}(3)=71.6^{\circ} \\
& \alpha=71.6^{\circ} \\
& \begin{aligned}
\sqrt{10} \cos (x+71.6) & =3 \\
\cos (x+71.6) & =\frac{3}{\sqrt{10}}
\end{aligned} \\
& x+71.6=18.5,341.5,378.5 \\
& x=-5.1,269.9,6.9
\end{aligned}
$$

W-09 The blades of a wind turbine are turning at a steady rate.
The height, h metres, of the tip of one of the blades above the ground at time, t seconds, is given by the formula

$$
h=36 \sin (1 \cdot 5 t)-15 \cos (1 \cdot 5 t)+65 .
$$

Express $36 \sin (1 \cdot 5 t)-15 \cos (1 \cdot 5 t)$ in the form
$k \sin (1 \cdot 5 t-a)$, where $k>0$ and $0<a<\frac{\pi}{2}$,
and hence find the two values of t for which the tip of this blade is at a height of 100 metres above the ground during the first turn.

$$
\begin{aligned}
36 \underline{\sin (1.5 t)}-15 \cos (1.5 t) & =k \sin (1.5 t-\alpha) \\
& =k \sin 1.5 t \cos \alpha-k \cos 1.5 t \sin \alpha
\end{aligned}
$$

$-k \sin \alpha=-15$
$k \sin \alpha=15$
$k \cos \alpha=36$
$\tan \alpha=\left(\frac{15}{36}\right)$

$$
\begin{aligned}
k & =\sqrt{36^{2}+(-15)^{2}} \\
& =39
\end{aligned}
$$

$\tan ^{-1}\left(\frac{15}{36}\right)=22,6^{\circ}$

$$
36 \sin (1.5 t)-15 \cos (1.5 t)=39 \sin (1.5 t-22.6)^{\circ}
$$

$$
\begin{aligned}
h & =36 \sin (1.5 t)-15 \cos (1.5 t)+65 \\
& =39 \sin (1.5 t-22.6)^{\circ}+65
\end{aligned}
$$

for $H E 16+T 1=100$

$$
\begin{array}{rlrl}
39 \sin (1.5 t-22.6)^{\circ}+65 & =100 & \quad \sin ^{-1}\left(\frac{35}{39}\right)=63.8^{\circ} \\
39 \sin (1.5 t-22.6)^{\circ} & =35 & \frac{S}{4} & A \\
\sin (1.5 t-22.6)^{\circ} & =\frac{35}{34} & T & C \\
(1.5 t-22.6)^{\circ} & =63.8^{\circ}, 116.2^{\circ} \\
1.5 t & =86.4,138.8^{\circ} \\
t & =57.6,92.5^{\circ} \\
t & =1.005,1.615 \text { radians }
\end{array}
$$

allows use to add a cos and sim wave. uses the compound angle formulae.

$$
a \cos x+b \sin x=k \cos (x-\alpha)
$$

$$
\begin{aligned}
& k \cos (x \pm \alpha) \\
& k \sin (x \pm \alpha)
\end{aligned}
$$

Follow this example:

$$
\begin{aligned}
4 \sin x-3 \cos x & =k \sin (x-\alpha) \\
& =k \sin x \cos \alpha-k \cos x \sin \alpha
\end{aligned}
$$

$$
\begin{array}{rlrlrl}
-k \sin \alpha & =-3 & \text { so } k \sin \alpha=3 & & k & =\sqrt{3^{2}+4^{2}} \\
k \cos \alpha & =4 & & =\sqrt{25} \\
\tan \alpha & =\frac{\sin \alpha}{\cos \alpha}=\frac{3}{4} \quad \frac{S}{} \quad A^{\prime} & & & =5 \\
\alpha & =36.9^{\circ} & & &
\end{array}
$$

finish with $\longrightarrow 4 \sin x-3 \cos x=5 \sin (x-36.9)^{\circ}$
this statement
You could now use wave function to solve $4 \sin x-3 \cos x=1$ by rewriting to $5 \sin (x-36.9)^{\circ}=1$

