HIGHER MATHS

Vectors

Notes with Examples

Mr Miscandlon Gw13miscandlondavid@glow.sch.uk A vector has both magnitude (size) and direction.

Naming a Vector

A vector is named either using the letters at each end of the directed line segment or a single bold or underlined letter.

 \overrightarrow{AB} or **<u>u</u>** in the diagram is a directed line segment.

 $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$ is \overrightarrow{AB} in component form.

Adding, Subtracting and Multiplying by a Scalar

<u>u</u> + <u>v</u>	<u>u</u> - <u>v</u>	3 <u>u</u> - 4 <u>v</u>
$= \binom{2}{4} + \binom{-3}{1}$	$= \binom{2}{4} - \binom{-3}{1}$	$= 3 \binom{2}{4} - 4 \binom{-3}{1}$
$= \binom{-1}{5}$	$= \binom{5}{3}$	$= \binom{6}{12} - \binom{-12}{4}$
		$=\binom{18}{8}$

NEVER try to simplify a vector like a fraction

Magnitude of a Vector

The size of a vector can be calculated by squaring each component, adding together then square rooting.

$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \qquad \overrightarrow{PQ} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$$
$$|\overrightarrow{AB}| = \sqrt{2^2 + 4^2} \qquad |\overrightarrow{PQ}| = \sqrt{3^2 + (-1)^2 + 2^2}$$
$$= \sqrt{20} \qquad = \sqrt{14}$$
$$= 2\sqrt{5}$$

Position Vector

 \overrightarrow{OP} is the position vector of the point P (x, y, z).

In component form $\overrightarrow{OP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ So $\underline{p} = \overrightarrow{OP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

In the diagram to the right,

 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$

 $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$

$$\overrightarrow{AB} = \underline{\boldsymbol{b}} - \underline{\boldsymbol{a}}$$

This is true for all vectors ie $\overrightarrow{ST} = \underline{t} - \underline{s}$

Examples

V-01 A is the point (-12, 4) and B is the point (5, -2).

- (a) Write the components of the position vectors $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$.
- (b) Find the components of \overrightarrow{AB}

(a)
$$\underline{a} = \begin{pmatrix} -i2 \\ 4 \end{pmatrix}$$
 $\underline{b} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$
(b) $\overrightarrow{AB} = \underline{b} - \underline{a}$
 $= \begin{pmatrix} 5 \\ -2 \end{pmatrix} - \begin{pmatrix} -i2 \\ 4 \end{pmatrix}$
 $= \begin{pmatrix} 17 \\ -6 \end{pmatrix}$

(i) the components of \overrightarrow{PQ} (ii) $|\overrightarrow{PQ}|$

(a) P (2, 5) Q (4,-2)
(b) P (-2, 4, 5) Q (-3, 0, -2)
(c) P (2, 0, -12) Q (-2, 6, 0)

(a)
$$\overrightarrow{PQ} = \overrightarrow{q} - \overrightarrow{f}$$

 $= \begin{pmatrix} 4 \\ -2 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \end{pmatrix}$
 $= \begin{pmatrix} 2 \\ -7 \end{pmatrix}$
 $\overrightarrow{PQ} = \sqrt{2^{2} + (-7)^{2}}$
 $= \sqrt{53}$
(b) $\overrightarrow{PQ} = \cancel{q} - \cancel{p}$
 $= \begin{pmatrix} -3 \\ 0 \\ -2 \end{pmatrix} - \begin{pmatrix} -1 \\ 4 \\ 5 \end{pmatrix}$
 $= \begin{pmatrix} -2 \\ 0 \\ -2 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ -12 \end{pmatrix}$
 $= \begin{pmatrix} -4 \\ 6 \\ 12 \end{pmatrix}$
 $= \sqrt{196}$
 $= \sqrt{196}$
 $= \sqrt{196}$
 $= \sqrt{196}$

Unit Vector

A unit vector is a vector with magnitude equal to 1

To calculate the unit vector of a given vector we divide each component by the magnitude of the vector.

Examples

V-03 Calculate the unit vector of $\underline{u} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$ $|\underline{u}| = \sqrt{3^2 + 0^2 + 4^2}$ = 5 $\boxed{v_{ni+} vector \underline{u} = \frac{1}{5} \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}}$ $\frac{\partial R}{\partial R} = \frac{u}{2} = \begin{pmatrix} 3/5 \\ 0 \\ 4/5 \end{pmatrix}$

V-04 If
$$\underline{a} = \begin{pmatrix} -5\\2\\4 \end{pmatrix}$$
 and $k\underline{a}$ is a unit vector, calculate the value of k .
 $(\underline{a} | = \sqrt{(-5)^2 + (2)^2 + (4)^2}$
 $= \sqrt{45}$
 $k = \frac{1}{\sqrt{45}}$

Parallel Vectors and Collinearity

If vector $\underline{v} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ then $k\underline{v} = \begin{pmatrix} 2k \\ -1k \\ 3k \end{pmatrix}$ then vector $k\underline{v}$ is parallel to vector \underline{v} .

Hence, if $\underline{u} = k\underline{v}$ then \underline{u} is parallel to \underline{v} .

Note: if k<0 then the vectors are still parallel but facing in opposite directions.

We know from the straight line chapter that points are collinear if they lie on a straight line.

So if $\overrightarrow{AB} = k\overrightarrow{BC}$ where k is a scalar, then \overrightarrow{AB} is parallel to \overrightarrow{BC} . They share a common point, B, meaning A, B and C **must** be collinear.

Examples

V-05 P is (2, -3, 5), Q is (9, -6, 9) and R is (23, -12, 17). Prove the points are collinear.

$$\vec{Pa} = q - f \qquad \vec{QR} = \underline{f} - q$$

$$= \begin{pmatrix} q \\ -6 \\ q \end{pmatrix} - \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} \qquad = \begin{pmatrix} 23 \\ -12 \\ 17 \end{pmatrix} - \begin{pmatrix} q \\ -6 \\ 8 \end{pmatrix}$$

$$= \begin{pmatrix} 14 \\ -6 \\ 8 \end{pmatrix}$$

$$\vec{QR} = 2 \vec{PQ} \quad \text{SD VECTORS ARE}$$

$$\vec{PARALLEL}, SHARE COMMON POINT$$

$$Q \quad \text{SO PDINTS ARE LOLLIVERR}$$

V-06 Points E (-1, 4, 8), F (1, 2, 3) and G (5, y, z) are collinear. Find the values of y and z.

$$\vec{EF} = \vec{f} - \vec{e} \qquad \vec{FG} = \vec{g} - \vec{t}$$

$$= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} -1 \\ 4 \\ 8 \end{pmatrix} \qquad = \begin{pmatrix} S \\ y \\ z \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 4 \\ y - 2 \\ z - 3 \end{pmatrix}$$

BECAUSE E, FLG ARE COLLINEAR THEN EFL FG ARE PARALLEL

Section formula

If q is the position vector of the point Q that divides AB in the ratio of m:n then

$$\underline{q} = \left(\frac{n}{m+n}\right)\underline{a} + \left(\frac{m}{n+m}\right)\underline{b}$$

This is called the **section formula**.

You either need to remember this or how to solve these types of questions using an alternative method.

Alternate Methods

It is possible to find the coordinates of Point Q by an alternative method. Following these steps will result in obtaining the coordinates of Q:

- Find \overrightarrow{AB}
- Calculate the fraction of \overrightarrow{AB} based on the ratio that Q splits AB
- Add this to position vector <u>a</u>
- Change to coordinates

It is also possible to complete these calculations using a diagram.

Examples

V-07 If E is (4, -6, 12), F (4, 4, -3) and S divides EF in the ratio of 3:2, find the coordinates of S.

V-08 A and B have coordinates (3, 2) and (7, 14). If $\frac{AP}{PB} = \frac{1}{3}$, find the coordinates of the point P.

i, j, k Components

All three-dimensional vectors can be written in terms of i, j and k, where:

- * *i* is a unit vector in the *x* direction
- * \boldsymbol{j} is a unit vector in the y direction
- * \mathbf{k} is a unit vector in the z direction

In component form these are written as
$$i = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 $j = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $k = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Examples

V-09 Express each vector in component form

(a)
$$\underline{u} = 2i + 5j - 3k$$
 (b) $\underline{v} = i - 3j + 2k$
 $\underline{u} = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ $\underbrace{v} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$

V-10 Express each vector in terms of i, j, and k

(a)
$$\underline{p} = \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix}$$
 (b) $\overrightarrow{AB} = \begin{pmatrix} 5 \\ 0 \\ -2 \end{pmatrix}$
 $\overrightarrow{F} = 2i - 6j + 3k$ $\overrightarrow{AB} = 5i - 2k$

V-11 If $\underline{s} = 2i + j - 4k$ and $\underline{t} = -3i + 2j + k$, calculate

V-12 $\underline{u} = 2i + 4j - 3k$ and $\underline{v} = ai + j - 5k$. If $|\underline{u}| = |\underline{v}|$ calculate a.

$$\underline{u} = \sqrt{(2)^{2} + (4)^{2} + (-3)^{2}} \qquad |\underline{v}| = \sqrt{a^{2} + (1)^{2} + (-5)^{2}} \\ = \sqrt{2q} \qquad \qquad = \sqrt{a^{2} + 26} \\ (\underline{u}| = |\underline{v}|) \\ \sqrt{2q} = \sqrt{a^{2} + 26} \\ 2q = a^{2} + 26 \\ a^{2} = 3 \\ q = \pm \sqrt{3} \end{cases}$$

Scalar Product

So far we have added, subtracted and multiplied a vector by a scalar. The scalar product allows us to multiply two vectors together. The scalar product is also called the dot product.

Note: The vectors must be pointing away from each other (and the vertex) The scalar product is not a vector (it does not have direction)

The scalar product is defined as $a \cdot b = |a||b| \cos \theta$ where θ is the angle between the vectors a and b, $0 < \theta < 180^{\circ}$

Note: If a and b are perpendicular then $a \cdot b = 0$

Examples

V-13 Calculate the scalar product of

The scalar product can also be calculated as $a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$

if
$$a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

This is known as the component form of the scalar product

Examples

V-14 Calculate the scalar product of

(a)
$$\underline{u} = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix}$$
 $\underline{v} = \begin{pmatrix} -2 \\ 6 \\ 3 \end{pmatrix}$ (b) $\underline{s} = 2i + j - 4k$ $\underline{t} = -3i + 2j + k$
(a) $\underline{u} \cdot \underline{v} = 2(2) + o(6) + 5(3)$ (b) $\underline{s} \cdot \underline{t} = 2(-3) + 1(2) + (-4)(1)$
 $= -4 + o + 15$
 $= -6 + 2 - 4$
 $= -8$

V-15 A is the point (2, 5, -1), B is (3, -7, 2) and C is (-1, -2, -3). Find

(a)
$$\overrightarrow{AB}.\overrightarrow{AC}$$
 (b) $\overrightarrow{BA}.\overrightarrow{BC}$

(a)
$$\overrightarrow{AB} = \underbrace{b}_{-a} - \underbrace{a}_{Ac} = \underbrace{c}_{-a} - \underbrace{a}_{Bc} = \underbrace{c}_{-b} - \underbrace{b}_{BA} = \begin{pmatrix} -1 \\ 11 \\ 12 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} - \begin{pmatrix} 3 \\ -7 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} - \begin{pmatrix} 3 \\ -7 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 12 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 \\ 12 \\ -3 \end{pmatrix}$$

$$= \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} - \begin{pmatrix} 3 \\ -7 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \\ -5 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -5 \end{pmatrix} = \begin{pmatrix} -1 \\$$

Angle between Two Vectors

We know

SO

$$a. b = |a||b| \cos \theta$$

 $a. b = a_1b_1 + a_2b_2 + a_3b_3$
 $|a||b| \cos \theta = a_1b_1 + a_2b_2 + a_3b_3$

$$\cos \theta = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{|a||b|}$$

$$\cos\theta = \frac{a.b}{|a||b|}$$

Examples

V-16 Calculate the angle between vectors $\underline{s} = 2i + j - 4k$ and $\underline{t} = -3i + 2j + k$

V-17 If A is the point (2, 5, -1), and B is (3, -7, 2). Calculate the size of angle AOB.

$$\overrightarrow{OA} = \begin{pmatrix} 2\\5\\1 \end{pmatrix} \qquad \overrightarrow{OB} = \begin{pmatrix} 3\\-7\\2 \end{pmatrix}$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = 2(3) + 5(-7) + 1(2)$$

$$= 6 - 35 + 2$$

$$= -27$$

$$|\overrightarrow{OA}| = \sqrt{(2)^2 + (5)^2 + (1)^2}$$

$$= \sqrt{30}$$

$$|\overrightarrow{OB}| = \sqrt{(3)^2 + (-7)^2 + (2)^2}$$

$$= \sqrt{62}$$

$$(os \ A \circ B = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{(\overrightarrow{OA} \parallel \overrightarrow{OB})}$$

$$= \frac{-27}{\sqrt{30}\sqrt{62}}$$

$$A \circ B = \cos^{-1} \left(\frac{-27}{\sqrt{30}\sqrt{62}}\right)$$

$$= 128.8^{\circ}$$

1

3

5

O is the origin, D is the point (2, 2, 6) and OA = 4 units.

M is the mid-point of OA.

- (a) State the coordinates of B.
- (b) Express \overrightarrow{DB} and \overrightarrow{DM} in component form.
- (c) Find the size of angle BDM.

(A)
$$g(4_{1}, 4_{1}, 0)$$

(b) $D(2_{1}, 2_{1}, 6) \quad m(2_{1}, 0, 0)$
 $\overrightarrow{DB} = \frac{b}{2} - \underline{d}$ $\overrightarrow{Dm} = \underline{m} - \underline{d}$
 $= \begin{pmatrix} 4\\ 4\\ 0 \end{pmatrix} - \begin{pmatrix} 2\\ 2\\ 6 \end{pmatrix}$ $= \begin{pmatrix} 2\\ 0\\ 0 \end{pmatrix} - \begin{pmatrix} 2\\ 2\\ -6 \end{pmatrix}$
 $= \begin{pmatrix} 2\\ 2\\ -6 \end{pmatrix}$
(C) $\overrightarrow{DB}, \overrightarrow{Dm} = 2(0) + 2(-2) + (-6)(-6)$ (os $BDm = \overrightarrow{DB}, \overrightarrow{Dm}$
 $= 0 - 4 + 36$
 $= 32$ $= 32$
 $|\overrightarrow{DB}| = \sqrt{(2)^{2} + (2)^{2} + (-6)^{2}}$
 $= \sqrt{444}$ $BDM = Cos^{-1} \begin{pmatrix} 32\\ \sqrt{44}\sqrt{40} \end{pmatrix}$
 $= \sqrt{40}$

We know that $a \cdot b = |a||b| \cos \theta$ and $\cos 90 = 0$, so if $a \cdot b = 0$ then vectors are perpendicular. If a, b and c are vectors then $a \cdot (b + c) = a \cdot b + a \cdot c$

Examples

V-19 If $\underline{s} = 2i + j + ak$ and $\underline{t} = -3i + 2j + 2k$ are perpendicular, calculate a.

$$IF \leq AND \leq DRF PERP \leq \underline{t} = 0$$

$$\leq \underline{t} = 2(-3) + 1(2) + a(2)$$

$$= -6 + 2 + 2q$$

$$= 2a - 4$$

$$2a - 4 = 0$$

$$2a = 4$$

$$a = 2$$
(2)
(-1)
(2)

V-20 Calculate
$$\boldsymbol{u}.(\boldsymbol{v} + \boldsymbol{w})$$
 when $\underline{\boldsymbol{u}} = \begin{pmatrix} 2\\5\\1 \end{pmatrix}$ $\underline{\boldsymbol{v}} = \begin{pmatrix} -1\\4\\-2 \end{pmatrix}$ $\underline{\boldsymbol{w}} = \begin{pmatrix} 2\\-3\\1 \end{pmatrix}$
 $\underline{\boldsymbol{u}}.(\underline{\boldsymbol{v}} + \underline{\boldsymbol{w}})$ $\underline{\boldsymbol{v}} = 2(-1) + 5(4) + 1(-2)$
 $= -2 + 2p - 2$
 $= -2 + 2p - 2$
 $= -2 + 2p - 2$
 $= -6$ $\underline{\boldsymbol{u}}.\underline{\boldsymbol{w}} = 2(2) + 5(-3) + 1(1)$
 $= 4 - 15 + 1$

(a) State the coordinates of M and N. 2 (b) Express the vectors \overrightarrow{VM} and \overrightarrow{VN} in component form. 2 (c) Calculate the size of angle MVN. 5 (a) M(0,1,0) N(4,2,2) $(b) \quad \overrightarrow{VM} = \underline{M} - \underline{v} \quad \overrightarrow{VN} = \underline{v} - \underline{v}$ $= \begin{pmatrix} \sigma \\ i \\ \flat \end{pmatrix} - \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix} = \begin{bmatrix} 4 \\ 2 \\ 2 \\ 2 \end{bmatrix} - \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}$ $= \begin{pmatrix} 0 \\ -3 \end{pmatrix}$ - (4) (C) VM. VN $\vec{Vm} \cdot \vec{VN} = O(4) + (-3)(-2) + (-3)(-1)$ (os MUN = = 0 + 6 + 3 = 9 $\left| \sqrt{m} \right| = \sqrt{(0)^2 + (-3)^2 + (-3)^2}$ $MVN = \cos^{-1}\left(\frac{4}{\sqrt{18}\sqrt{21}}\right)$ = 18 $|VN| = \sqrt{(4)^2 + (-2)^2 + (-1)^2}$ = 62.4° $= \sqrt{21}$

V-22 An equilateral triangle of side 5 units is shown. The vectors p and q are as represented in the diagram. What is the value of p.q?

$$f \cdot q = (f) | q | \cos \theta$$

= $5 \times 5 \times \cos 60$
= $\frac{25}{2}$

Vector Journeys

It is possible to describe a vector as a combination of other vectors. Doing this "creates" a journey.

Examples

V-23 The diagram shows a square-based pyramid P,QRST. \overrightarrow{TS} , \overrightarrow{TQ} and \overrightarrow{TP} represent f, g and h respectively.

Express \overrightarrow{RP} in terms of f, g and h.

$$\vec{RP} = -f - g + h$$
 $\vec{RQ} = -f \vec{QT} = -g \vec{TP} = h$

Summary

rectors A vector has direction and magnitude RECAP FROM $\underline{\mathbf{y}} = \overline{\mathbf{AB}} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \quad \underline{\mathbf{y}} = \overline{\mathbf{CD}} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ NAT 5: JA B Y $2\underline{u} + 3\underline{v} = 2\binom{4}{3} + 3\binom{3}{1}$ magnitude is length: $= \binom{8}{L} + \binom{9}{3}$ $|u| = \sqrt{4^2 + 3^2}$ $= \begin{pmatrix} 17\\ q \end{pmatrix}$ = 125 = 5 units RULES WORK WITH 3D VECTORS TOO! PARALLEL VECTORS: parallel if one vector is a multiple of the COLLINEARITY: Similar to straight line topic 1. Find AB & BC ۰c 2. Check parallel B 3. State " parallel and common Å point B so collinear >> SCALAR PRODUCT $\underbrace{i, j, k}_{l} = \begin{pmatrix} i \\ o \\ 0 \end{pmatrix} \quad \underbrace{j}_{l} = \begin{pmatrix} 0 \\ i \\ 0 \end{pmatrix} \quad \underbrace{k}_{l} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ two ways to calculate, (DOT PRODUCT): both are given in formular sheet i is movement on x-axis a. b = lallbl cos 0 - angle between Vectors a and b j is movement on y-drir K is movement on z-axis $\partial_{1} b = a_{1}b_{1} + a_{2}b_{2} + \partial_{3}b_{3}$ FINDING COORDINATES OF A POINT ON A LINE : ANGLE BETWEEN VECTORS : $\frac{2}{5} \frac{c}{AB} = \frac{3}{5} \frac{AC}{F} \frac{5}{10} \frac{m}{10} \frac$ ri) to More of a challenge? $Cos \Theta = \underline{u} \cdot \underline{v}$ ų 5(k-9)= 3(E-9) vectors must be then solve! pointing away from not given in an each other! exam, realiange REMEMBER : YOU MUST WRITE COORDINATES For perpendicular vectors: scalar product, HORIZONTALY !!! a, b = 0