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Recap on National 5 Vectors

A vector has both magnitude (size) and direction.

Naming a Vector

A vector is named either using the letters at each end of the directed line segment or a single
bold or underlined letter.
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AB or u in the diagram is a directed line segment.

(i) is AB in component form.

Adding, Subtracting and Multiplying by a Scalar
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NEVER try to simplify a vector like a fraction

Magnitude of a Vector

The size of a vector can be calculated by squaring each component, adding together then
square rooting.
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- () o= (-1)
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Position Vector

OP is the position vector of the point P (x, y, z).

X
In component form 0P = <y>

z
. x
So p=0P=<y>

Z
In the diagram to the right, OB = 04 + AB
AB = OB — 04
AB=b-a

—

This is true for all vectors ie ST =t —s

Examples

V-01 Ais the point (-12, 4) and B is the point (5, -2).

(a) Write the components of the position vectors a and b.

(b) Find the components of AB



V-02 For each pair of points find

(@) P(2,53)
(b) P (-2, 4,5)
(c) P(2,0,-12)
(a) p_b = 57-';)_

(i) the components of PQ
(ii) [PQ|

Q (4,-2)
Q (-3, 0, -2)
Q ('2) 6) 0)
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Unit Vector

A unit vector is a vector with magnitude equal to 1

To calculate the unit vector of a given vector we divide each component by the magnitude of
the vector.

Examples

3
V-03 Calculate the unit vector of u = (0)

4
lu) = i3‘+ ot x 4"

-5
V-04 Ifa = ( 2 > and ka is a unit vector, calculate the value of k.
4

2]

Parallel Vectors and Collinearity

2 2k
If vector v = <—1> then kv = (—1k> then vector kv is parallel to vector v.
3 3k

Hence, if u = kv then u is parallel to v.

Note: if k<0 then the vectors are still parallel but facing in opposite directions.

We know from the straight line chapter that points are collinear if they lie on a straight line.

So if AB = kBC where k is a scalar, then 4B is parallel to BC. They share a common point, B,
meaning A, B and C must be collinear.



Examples
V-05 Pis (2, -3,5), Qis (9, -6, 9) and Ris (23, -12, 17). Prove the points are collinear.
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V-06 PointsE (-1, 4, 8), F (1, 2, 3) and G (5, y, z) are collinear. Find the values of y and z.

|

Hie
3) on

CLALSE E)F LG ALE LoLLINERR
THeN  £f 4 GG ARE PRRALEL

L = & ——Qj‘j 2-3= -2
g~ <Y 4= "2 2=-7

=
EF = f — e €4

n
e
~—
1
|
*® £ _
—
W




Splitting a Vector in a Given Ratio

Section formula

If qis the position vector of the point Q that divides AB in the ratio of m:n then

1
n m
_ B
g - (m+n) a+t (n+m) Q Hi Q
This is called the section formula. A

You either need to remember this or how to solve these types of questions using an alternative
method.

Alternate Methods

It is possible to find the coordinates of Point Q by an alternative method. Following these steps
will result in obtaining the coordinates of Q:

Find 4B
Calculate the fraction of AB based on the ratio that Q splits AB

Add this to position vector g
Change to coordinates

It is also possible to complete these calculations using a diagram.

Examples

V-07 If Eis (4, -6, 12), F (4, 4, -3) and S divides EF in the ratio of 3:2, find the
coordinates of S.

F = f -¢
% _4)
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E -fo
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£S = 3 €F




V-08 A and B have coordinates (3, 2) and (7, 14). If % = g, find the coordinates of the

point P.
B
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[, j, Kk Components

All three-dimensional vectors can be written in terms of i, j and k, where:

* {is a unit vector in the x direction
* jis a unit vector in the y direction
* k is a unit vector in the z direction

1 0 0
In component form these are writtenas i = (0) Jj= (1) k = (0)

0 0 1
Examples

V-09 Express each vector in component form

(@ u=2i+5 — 3k (b) wv=i-3j+ 2k
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V-10 Express each vector in terms of i, j, and k
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V-11 Ifs = 2i +j — 4kand t = -3i + 2j + k, calculate

@ s-t (b) tt () 25— 3t (d) 13t + 25|
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V-12 u= 2i + 4j — 3k andv = ai + j — 5k. If Ju| = |y| calculate a.
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Scalar Product

So far we have added, subtracted and multiplied a vector by a scalar. The scalar product allows
us to multiply two vectors together. The scalar product is also called the dot product.

Note: The vectors must be pointing away from each other (and the vertex)

The scalar product is not a vector (it does not have direction)

The scalar product is defined as| a.b = |a||b| cos 8 [where 8 is the angle

a
between the vectorsaand b, 0 < 6 < 180° < |
b

Note:If a and b are perpendicular thena.b = 0

Examples
V-13 Calculate the scalar product of

(@) (b)

45°
a b
al =4, b =6
a.b = lallkl s 0 2k = lally| s 6
= bxbx IZOSH—O -
T Tx%x tos |35
T -2

= -9l

The scalar product can also be calculated as|a.b = a,;b, + a,b, + asbs

a, by
ifa= <a2> and b = <b2>
a3 b3

This is known as the component form of the scalar product




Examples

V-14 Calculate the scalar product of

2 —2
(@) g=<0) 2=<6> (b) s=2i+j—4k t=-3i+2+k
5 3

@) u.v= 262)+ of¢) + 5(3) (b)) s.&= 13+ 12) * (-z,uI;]
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= - - %

V-15 A is the point (2, 5, -1), Bis (3, -7, 2) and C is (-1, -2, -3). Find

(@) AB.AC (b) BA.BC
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Angle between Two Vectors

We know
a.b = |a||b|cos b
ab = a1b1 + azbz + a3b3
SO |a||b|C059 = a1b1 + azbz + a3b3
COSQ — a1b1+a2b2 +a3b3
|lal|b|
b
6= —
05T = il
Examples
V-16 Calculate the angle between vectorss = 2i + j — 4kandt = —3i + 2j + k
5.4 = o)+ 1(2) + FoYo) (o= Sk
= -p 41 -k HIEY
= *—3 = - %
Joi Ji
= t Nt o+ Byt
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V-17 If Ais the point (2, 5, -1), and B is (3, -7, 2). Calculate the size of angle AOB.
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V-18

D,OABC is a square based pyramid as shown in the diagram below.

o

D(2, 2, 6)
¥
¢ B
g . \/ |
- M A <
O is the origin, D is the point (2,2,6) and OA = 4 units.
M is the mid-point of OA.
(7) State the coordinates of B.
(b) Express DB and DM in component form.
(c) Find the size of angle BDM.
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Applications of the Scalar Product

We know that a.b = |a||b| cos @& and cos90 = 0, so if a.b = 0 then vectors are perpendicular
If a,b and c are vectors then a(b+c) = ab + a.c

Examples

V-19 Ifs = 2i + j + akandt = —3i + 2j + 2k are perpendicular, calculate a.

I 5 D & MR PP st =o

E. - g(q) ¥ |(L) + u_(L)
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= 2a - 4
Qa- 4 =
2w =Yy
a =71
2 -1 2
V-20 Calculate u. (v +w) wheng=<5> z=<4> y=<—3>
1 -2 1
o1+ x \ wyv = 2+ sl) 416
e = -2 4 20 -1
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S x (o) e = ab)+ 50 +1l)
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V-21 The diagram shows a cuboid OPOQR,STUV relative to the coordinate axes.

4

P is the point (4,0,0), Q is (4,2,0)
and Uis (4,2,3).

M is the midpoint of OR.

N is the point on UQ such that 5
UN = luQ.

U (4,2, 3)
| N
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(7) State the coordinates of M and N.
(b) Express the vectors VM and VN in component form.

(c) Calculate the size of angle MVN.
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V-22 An equilateral triangle of side 5 units is shown.The

vectors p and g are as represented in the diagram What
is the value of p.q?
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Vector Journeys

It is possible to describe a vector as a combination of other vectors. Doing this "creates” a
journey.

Examples

V-23  The diagram shows a square-based pyramid RQRST.'E, TQ and TP represent f,
g and h respectively.

Express RP in terms of f,gand h.

—

p — %
RO = -f -g +h ko=~ a=-9 TP=bh



V-24

Vectors p, q and r are represented
on the diagram shown where angle
ADC = 30°.

It is also given that |p| =4 and |g| = 3.
(a) Evaluate p.(g +r)and r.(p — q).

(b) Find |qg +r| and |p — q/.
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Summary
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