HIGHER MATHS

Vectors

Notes with Examples

Recap on National 5 Vectors

A vector has both magnitude (size) and direction.

Naming a Vector

A vector is named either using the letters at each end of the directed line segment or a single bold or underlined letter.

$\overrightarrow{A B}$ or $\underline{\mathbf{u}}$ in the diagram is a directed line segment.
$\binom{2}{4}$ is $\overrightarrow{A B}$ in component form.

Adding, Subtracting and Multiplying by a Scalar

$$
\left.\begin{array}{lll}
\underline{\mathbf{u}}+\underline{\mathbf{v}} & \underline{\mathbf{u}}-\underline{\mathbf{v}} & \underline{\mathbf{u}}-4 \underline{\mathbf{v}} \\
2 \\
4
\end{array}\right)+\binom{-3}{1} \quad=\binom{2}{4}-\binom{-3}{1} \quad=3\binom{2}{4}-4\binom{-3}{1} .
$$

NEVER try to simplify a vector like a fraction

Magnitude of a Vector

The size of a vector can be calculated by squaring each component, adding together then square rooting.

$$
\begin{aligned}
\overrightarrow{A B} & =\binom{2}{4} \\
|\overrightarrow{A B}| & =\sqrt{2^{2}+4^{2}} \\
& =\sqrt{20} \\
& =2 \sqrt{5}
\end{aligned}
$$

$$
\overrightarrow{P Q}=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

$$
|\overrightarrow{P Q}|=\sqrt{3^{2}+(-1)^{2}+2^{2}}
$$

$$
=\sqrt{14}
$$

Position Vector

$\overrightarrow{O P}$ is the position vector of the point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.

In component form $\overrightarrow{O P}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
So $\underline{\boldsymbol{p}}=\overrightarrow{O P}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

In the diagram to the right, $\quad \overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}$

$$
\begin{aligned}
& \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A} \\
& \overrightarrow{A B}=\underline{\boldsymbol{b}}-\underline{\boldsymbol{a}}
\end{aligned}
$$

This is true for all vectors ie $\overrightarrow{S T}=\underline{t}-\underline{s}$

Examples
$\mathrm{V}-01 \mathrm{~A}$ is the point $(-12,4)$ and B is the point $(5,-2)$.
(a) Write the components of the position vectors \underline{a} and \underline{b}.
(b) Find the components of $\overrightarrow{A B}$
(a) $\underline{a}=\binom{-12}{4} \quad \underline{b}=\binom{5}{-2}$
(b) $\quad \overrightarrow{A B}=\underline{b}-a$

$$
\begin{aligned}
& =\binom{5}{-2}-\binom{-12}{4} \\
& =\binom{17}{-6}
\end{aligned}
$$

V-02 For each pair of points find
(i) the components of $\overrightarrow{P Q}$
(ii) $|\overrightarrow{P Q}|$
(a) $P(2,5) \quad Q(4,-2)$
(b) $P(-2,4,5) \quad Q(-3,0,-2)$
(c) $P(2,0,-12) \quad Q(-2,6,0)$
(a) $\overrightarrow{P_{Q}}=q-f$
(b) $\quad \overrightarrow{P Q}=q-f$
(c) $\overrightarrow{P Q}=q-p$ $=\binom{4}{-2}-\binom{2}{5}$ $=\left(\begin{array}{c}-3 \\ 0 \\ -2\end{array}\right)-\left(\begin{array}{c}-2 \\ 4 \\ 5\end{array}\right)$ $=\left(\begin{array}{c}-2 \\ 6 \\ 0\end{array}\right)-\left(\begin{array}{c}2 \\ 0 \\ -12\end{array}\right)$ $=\binom{2}{-7}$
$=\left(\begin{array}{l}-1 \\ -4 \\ -7\end{array}\right)$
$=\left(\begin{array}{c}-4 \\ 6 \\ 12\end{array}\right)$
$\left|\overrightarrow{P_{Q}}\right|=\sqrt{2^{2}+(-7)^{2}}$
$|\overrightarrow{P Q}|=\sqrt{(-1)^{2}+(-4)^{2}+(-7)^{2}} \quad|\overrightarrow{P Q}|=\sqrt{(-4)^{2}+6^{2}+12^{2}}$

$$
=\sqrt{53}
$$

$$
=\sqrt{66}
$$

$$
=\sqrt{196}
$$

$$
=14
$$

Unit Vector

A unit vector is a vector with magnitude equal to 1
To calculate the unit vector of a given vector we divide each component by the magnitude of the vector.

Examples

V-03 Calculate the unit vector of $\underline{\boldsymbol{u}}=\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right)$

$$
\begin{aligned}
|\underline{u}| & =\sqrt{3^{2}+0^{2}+4^{2}} \\
& =5
\end{aligned}
$$

$$
\begin{aligned}
\text { Unit vector } \underline{u} & =\frac{1}{5}\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right) \\
\text { OR } \quad \underline{u} & =\left(\begin{array}{c}
3 / 5 \\
0 \\
4 / 5
\end{array}\right)
\end{aligned}
$$

V-04 If $\underline{\boldsymbol{a}}=\left(\begin{array}{c}-5 \\ 2 \\ 4\end{array}\right)$ and $k \underline{\boldsymbol{a}}$ is a unit vector, calculate the value of k.

$$
\begin{aligned}
|\underline{a}| & =\sqrt{(-5)^{2}+(2)^{2}+(4)^{2}} \\
& =\sqrt{45} \\
k & =\frac{1}{\sqrt{45}}
\end{aligned}
$$

Parallel Vectors and Collinearity

If vector $\underline{\boldsymbol{v}}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$ then $k \underline{\boldsymbol{v}}=\left(\begin{array}{c}2 k \\ -1 k \\ 3 k\end{array}\right)$ then vector $k \underline{\boldsymbol{v}}$ is parallel to vector $\underline{\boldsymbol{v}}$.

Hence, if $\underline{\boldsymbol{u}}=k \underline{\boldsymbol{v}}$ then $\underline{\boldsymbol{u}}$ is parallel to $\underline{\boldsymbol{v}}$.

Note: if $\mathrm{k}<0$ then the vectors are still parallel but facing in opposite directions. We know from the straight line chapter that points are collinear if they lie on a straight line. So if $\overrightarrow{A B}=k \overrightarrow{B C}$ where k is a scalar, then $\overrightarrow{A B}$ is parallel to $\overrightarrow{B C}$. They share a common point, B , meaning A, B and C must be collinear.

Examples

V -05 P is $(2,-3,5), \mathrm{Q}$ is $(9,-6,9)$ and R is $(23,-12,17)$. Prove the points are collinear.

$$
\begin{aligned}
\overrightarrow{P_{Q}} & =q-f & \overrightarrow{Q R} & =r-q \\
& =\left(\begin{array}{c}
9 \\
-6 \\
9
\end{array}\right)-\left(\begin{array}{c}
2 \\
-3 \\
5
\end{array}\right) & & =\left(\begin{array}{c}
23 \\
-12 \\
17
\end{array}\right)-\left(\begin{array}{c}
9 \\
-6 \\
9
\end{array}\right) \\
& =\left(\begin{array}{c}
7 \\
-3 \\
4
\end{array}\right) & & =\left(\begin{array}{c}
14 \\
-6 \\
8
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{Q R}=2 \overrightarrow{P Q} \text { SO VECTORS ARE } \\
& \text { PARALLEL, SHARE COMMON POINT } \\
& Q \text { SO POINTS ARE COLINEAR }
\end{aligned}
$$

V-06 Points $\mathrm{E}(-1,4,8), \mathrm{F}(1,2,3)$ and $G(5, y, z)$ are collinear. Find the values of y and z.

$$
\begin{aligned}
\overrightarrow{E F} & =\underline{f}-\underline{e} \\
& =\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)-\left(\begin{array}{c}
-1 \\
4 \\
8
\end{array}\right) \\
& =\left(\begin{array}{c}
2 \\
-2 \\
-5
\end{array}\right)
\end{aligned}
$$

$$
\overrightarrow{F G}=g-f
$$

$$
=\left(\begin{array}{l}
5 \\
y \\
z
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
4 \\
y-2 \\
z-3
\end{array}\right)
$$

Because eff ag are collinear
THEN $\overrightarrow{E f}$ \& $\overrightarrow{F G}$ are parallel

$$
\left(\begin{array}{c}
4 \\
y-2 \\
z-3
\end{array}\right)=2\left(\begin{array}{c}
2 \\
-2 \\
-5
\end{array}\right)
$$

$$
\begin{gathered}
4=4 \\
y-2=-4
\end{gathered}
$$

$$
\begin{array}{rlrl}
y-2 & =-4 & 2-3 & =-10 \\
y & =-2 & z & =-7
\end{array}
$$

Splitting a Vector in a Given Ratio

Section formula

If \underline{q} is the position vector of the point Q that divides $A B$ in the ratio of $m: n$ then

$$
\underline{\boldsymbol{q}}=\left(\frac{n}{m+n}\right) \underline{\boldsymbol{a}}+\left(\frac{m}{n+m}\right) \underline{\boldsymbol{b}}
$$

This is called the section formula.

You either need to remember this or how to solve these types of questions using an alternative method.

Alternate Methods

It is possible to find the coordinates of Point Q by an alternative method. Following these steps will result in obtaining the coordinates of Q :

- Find $\overrightarrow{A B}$
- Calculate the fraction of $\overrightarrow{A B}$ based on the ratio that Q splits AB
- Add this to position vector \boldsymbol{q}
- Change to coordinates

It is also possible to complete these calculations using a diagram.
Examples

V-07 If E is $(4,-6,12), F(4,4,-3)$ and S divides $E F$ in the ratio of $3: 2$, find the coordinates of S.

V-08 A and B have coordinates $(3,2)$ and $(7,14)$. If $\frac{A P}{P B}=\frac{1}{3}$, find the coordinates of the point P.
$\frac{A P}{P B}=\frac{1}{3}$
$3 A P=P B$

$$
\begin{aligned}
\overrightarrow{A B} & =\underline{b}-\underline{a} \\
& =\binom{7}{14}-\binom{3}{2} \\
& =\binom{4}{12}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{A P} & =\frac{1}{4} \overrightarrow{A B} \\
& =\binom{1}{3}
\end{aligned}
$$

All three-dimensional vectors can be written in terms of $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k}, where:

* \boldsymbol{i} is a unit vector in the x direction
* \boldsymbol{j} is a unit vector in the y direction
* \boldsymbol{k} is a unit vector in the z direction

In component form these are written as $\quad i=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \quad j=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \quad k=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
Examples
V-09 Express each vector in component form
(a) $\underline{\boldsymbol{u}}=2 i+5 j-3 k$
(b) $\quad \underline{v}=i-3 j+2 k$
$\underline{u}=\left(\begin{array}{c}2 \\ 5 \\ -3\end{array}\right)$
$\underline{v}=\left(\begin{array}{c}1 \\ -3 \\ 2\end{array}\right)$

V-10 Express each vector in terms of i, j, and k
(a) $\quad \underline{\boldsymbol{p}}=\left(\begin{array}{c}2 \\ -6 \\ 3\end{array}\right)$
(b) $\quad \overrightarrow{A B}=\left(\begin{array}{c}5 \\ 0 \\ -2\end{array}\right)$
$f=2 i-6 j+3 k$
$\overrightarrow{A B}=5 i-2 k$

V-11 If $\underline{\boldsymbol{s}}=2 i+j-4 k$ and $\underline{\boldsymbol{t}}=-3 i+2 j+k$, calculate
(a) $\underline{s}-\underline{t}$
(b) $\underline{s}+\underline{t}$
(c) $2 \underline{s}-3 \underline{t}$
(d) $|3 \underline{t}+2 \underline{s}|$
(a) $\underline{s}-\underline{t}$
(b) $\underline{s}+\underline{t}$
$=\left(\begin{array}{c}2 \\ 1 \\ -4\end{array}\right)-\left(\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right)$
$=\left(\begin{array}{c}2 \\ 1 \\ -4\end{array}\right)+\left(\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right)$
(c) $2 \underline{s}-3 t$
$=\left(\begin{array}{c}5 \\ -1 \\ -5\end{array}\right)$
$=\left(\begin{array}{c}-1 \\ 3 \\ -3\end{array}\right)$
$=2\left(\begin{array}{c}2 \\ 1 \\ -4\end{array}\right)-3\left(\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right)$
$=\left(\begin{array}{c}4 \\ 2 \\ -8\end{array}\right)-\left(\begin{array}{c}-9 \\ 6 \\ 3\end{array}\right)$
(d) $3 \underline{t}+2 \underline{s}$ $=\left(\begin{array}{c}13 \\ -4 \\ -11\end{array}\right)$

$$
\begin{aligned}
& =3\left(\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right)+2\left(\begin{array}{c}
2 \\
1 \\
-4
\end{array}\right) \quad|3 \underline{t}+2 \underline{s}|=\sqrt{(-5)^{2}+8^{2}+(-5)^{2}} \\
& =\left(\begin{array}{c}
-9 \\
6 \\
3
\end{array}\right)+\left(\begin{array}{c}
4 \\
2 \\
-8
\end{array}\right)
\end{aligned}
$$

V-12 $\underline{\boldsymbol{u}}=2 i+4 j-3 k$ and $\underline{\boldsymbol{v}}=a i+j-5 k$. If $|\underline{\boldsymbol{u}}|=|\underline{\boldsymbol{v}}|$ calculate a.

$$
\begin{array}{rlrl}
\underline{u} & =\sqrt{(2)^{2}+(4)^{2}+(-3)^{2}} & |\underline{v}| & =\sqrt{a^{2}+(1)^{2}+(-5)^{2}} \\
& =\sqrt{29} & & \\
|\underline{u}| & =|\underline{v}| \\
\sqrt{29} & =\sqrt{a^{2}+26} \\
29 & =a^{2}+26 & \\
a^{2} & =3 \\
a & = \pm \sqrt{3} & a= \pm \sqrt{3}
\end{array}
$$

Scalar Product

So far we have added, subtracted and multiplied a vector by a scalar. The scalar product allows us to multiply two vectors together. The scalar product is also called the dot product.

Note: \quad The vectors must be pointing away from each other (and the vertex)
The scalar product is not a vector (it does not have direction)
The scalar product is defined as $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$ where θ is the angle between the vectors \boldsymbol{a} and $\boldsymbol{b}, 0<\theta<180^{\circ}$

Note: If \boldsymbol{a} and \boldsymbol{b} are perpendicular then $\boldsymbol{a} \cdot \boldsymbol{b}=\mathbf{0}$

Examples

V-13 Calculate the scalar product of
(a)
(b)

$$
|\mathbf{a}|=4,|\mathbf{b}|=6
$$

$$
|\mathbf{a}|=7,|\mathbf{b}|=8
$$

$$
\begin{aligned}
\underline{a} \cdot \underline{b} & =|\underline{a}||\underline{b}| \cos \theta \\
& =4 \times 6 \times \cos 120 \\
& =-12
\end{aligned}
$$

$$
\begin{aligned}
\underline{a} \underline{b} & =|\underline{a}||\underline{b}| \cos \theta \\
& =7 \times 8 \times \cos 135 \\
& =-28 \sqrt{2}
\end{aligned}
$$

The scalar product can also be calculated as $\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
if $a=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ and $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$
This is known as the component form of the scalar product

Examples

V-14 Calculate the scalar product of
(a) $\quad \underline{\boldsymbol{u}}=\left(\begin{array}{l}2 \\ 0 \\ 5\end{array}\right) \quad \underline{\boldsymbol{v}}=\left(\begin{array}{c}-2 \\ 6 \\ 3\end{array}\right)$
(b) $\underline{\boldsymbol{s}}=2 i+j-4 k \quad \underline{\boldsymbol{t}}=-3 i+2 j+k$
(a) $\underline{u} \cdot \underline{v}=2(-2)+0(6)+5(3) \quad$ (b) $\quad \underline{s} \cdot \underline{t}=2(-3)+1(2)+(-4)(1)$ $=-6+2-4$ $=-4+0+15$ $=-8$
$\mathrm{V}-15 \mathrm{~A}$ is the point $(2,5,-1)$, B is $(3,-7,2)$ and C is $(-1,-2,-3)$. Find
(a) $\overrightarrow{A B} \cdot \overrightarrow{A C}$
(b) $\overrightarrow{B A} \cdot \overrightarrow{B C}$
(a) $\overrightarrow{A B}=\underline{b}-\underline{a}$ $\begin{aligned} \overrightarrow{A C} & =\underline{c}-a \\ & =\left(\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right)-\left(\begin{array}{l}2 \\ 5 \\ -1\end{array}\right)\end{aligned}$

$$
=\left(\begin{array}{c}
3 \\
-7 \\
2
\end{array}\right)-\left(\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right)
$$

$$
=\left(\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right)-\left(\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right)
$$ $\begin{aligned} \overrightarrow{B C} & =\underline{c}-\underline{b} \\ & =\left(\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right)-\left(\begin{array}{c}3 \\ -7 \\ 2\end{array}\right)\end{aligned} \quad \overrightarrow{B A}=\left(\begin{array}{c}-1 \\ 12 \\ -3\end{array}\right)$

$$
=\left(\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right)-\left(\begin{array}{c}
3 \\
-7 \\
2
\end{array}\right)
$$

$$
\overrightarrow{B A}=\left(\begin{array}{c}
-1 \\
12 \\
-3
\end{array}\right)
$$

$$
=\left(\begin{array}{l}
-3 \\
-7 \\
-2
\end{array}\right)
$$

$$
=\left(\begin{array}{r}
-4 \\
5 \\
-5
\end{array}\right)
$$

(a) $\overrightarrow{A B}, \overrightarrow{A C}=1(-3)+(-12)(-7)+3(-2)$
(b) $\overrightarrow{B A} \cdot \overrightarrow{B C}=$
$=4+60+15$
$=75$
$=79$

Angle between Two Vectors

We know

$$
\begin{aligned}
& \boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta \\
& \boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
\end{aligned}
$$

SO

$$
\begin{aligned}
|\boldsymbol{a}||\boldsymbol{b}| \cos \theta & =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
\cos \theta & =\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{|\boldsymbol{a}||\boldsymbol{b}|} \\
\cos \theta & =\frac{\boldsymbol{a} \cdot b}{|\boldsymbol{a}||\boldsymbol{b}|}
\end{aligned}
$$

Examples

V-16 Calculate the angle between vectors $\underline{\boldsymbol{s}}=2 i+j-4 k$ and $\underline{\boldsymbol{t}}=-3 i+2 j+k$

$$
\begin{aligned}
& \underline{s} \cdot \underline{t}=2(-3)+1(2)+(-4)(1) \\
& =-6+2-4 \\
& \cos \theta=\frac{\underline{s} \cdot \underline{t}}{|\underline{s}||\underline{t}|} \\
& =-8 \\
& |\underline{s}|=\sqrt{(2)^{2}+(1)^{2}+(-4)^{2}} \\
& =\sqrt{21} \\
& |\underline{t}|=\sqrt{(-3)^{2}+(2)^{2}+(1)^{2}} \\
& =\sqrt{14}
\end{aligned}
$$

$\mathrm{V}-17$ If A is the point $(2,5,-1)$, and B is $(3,-7,2)$. Calculate the size of angle AOB.

$$
\begin{aligned}
& \overrightarrow{O A}=\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right) \quad \overrightarrow{O B}=\left(\begin{array}{c}
3 \\
-7 \\
2
\end{array}\right) \\
& \overrightarrow{O A} \cdot \overrightarrow{O B}=2(3)+5(-7)+1(2) \\
&=6-35+2 \\
&=-27 \\
&|\overrightarrow{O A}|=\sqrt{(2)^{2}+(5)^{2}+(1)^{2}} \\
&=\sqrt{30} \\
&|\overrightarrow{O B}|=\sqrt{(3)^{2}+(-7)^{2}+(2)^{2}} \\
&=\sqrt{62}
\end{aligned}
$$

$$
\begin{aligned}
\cos A O B & =\frac{\overrightarrow{O A} \cdot \overrightarrow{O B}}{|\overrightarrow{O A} \| \overrightarrow{O B}|} \\
& =\frac{-27}{\sqrt{30} \sqrt{62}} \\
A O B & =\cos ^{-1}\left(\frac{-27}{\sqrt{30} \sqrt{62}}\right) \\
& =128.8^{\circ}
\end{aligned}
$$

V-18 $D, O A B C$ is a square based pyramid as shown in the diagram below.

O is the origin, D is the point $(2,2,6)$ and $\mathrm{OA}=4$ units.
M is the mid-point of OA .
(a) State the coordinates of B.
(b) Express $\overrightarrow{\mathrm{DB}}$ and $\overrightarrow{\mathrm{DM}}$ in component form.
(c) Find the size of angle BDM.
(a) $B(4,4,0)$
(b) $D(2,2,6) \quad m(2,0,0)$

$$
\begin{aligned}
\overrightarrow{D B} & =\underline{b}-\underline{d} & \overrightarrow{D M} & =\underline{m}-\underline{d} \\
& =\left(\begin{array}{l}
4 \\
4 \\
0
\end{array}\right)-\left(\begin{array}{l}
2 \\
2 \\
6
\end{array}\right) & & =\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{l}
2 \\
2 \\
6
\end{array}\right) \\
& =\left(\begin{array}{c}
2 \\
2 \\
-6
\end{array}\right) & & =\left(\begin{array}{c}
0 \\
-2 \\
-6
\end{array}\right)
\end{aligned}
$$

(c) $\quad \overrightarrow{D B} \cdot \overrightarrow{D m}=2(0)+2(-2)+(-6)(-6) \quad \cos B D m=\frac{\overrightarrow{D B} \cdot \overrightarrow{D m}}{|\overrightarrow{D B}||\overrightarrow{D m}|}$
$=0-4+36$
$=32$
$|\overrightarrow{D B}|=\sqrt{(2)^{2}+(2)^{2}+(-6)^{2}}$

$$
=\frac{32}{\sqrt{44} \sqrt{40}}
$$

$$
=\sqrt{44}
$$

$$
\left|\overrightarrow{D_{m}}\right|=\sqrt{(0)^{2}+(-2)^{2}+(-6)^{2}}
$$

$$
B D M=\cos ^{-1}\left(\frac{32}{\sqrt{44} \sqrt{40}}\right)
$$

$$
=\sqrt{40}
$$

Applications of the Scalar Product

We know that $\boldsymbol{a} . \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$ and $\cos 90=0$, so if $\boldsymbol{a} . \boldsymbol{b}=0$ then vectors are perpendicular.
If $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} are vectors then

$$
a .(b+c)=a . b+a . c
$$

Examples

V-19 If $\underline{\boldsymbol{s}}=2 i+j+a k$ and $\underline{\boldsymbol{t}}=-3 i+2 j+2 k$ are perpendicular, calculate a.

$$
\text { IF } \begin{aligned}
& \underline{s} \text { AND } \underline{t} \text { ORE PERT } \underline{s} \cdot \underline{t}=0 \\
& \underline{s} \cdot \underline{t}=2(-3)+1(2)+a(2) \\
&=-6+2+2 a \\
&=2 a-4 \\
& 2 a-4=0 \\
& 2 a=4 \\
& a=2
\end{aligned}
$$

V-20 Calculate $\boldsymbol{u} .(\boldsymbol{v}+\boldsymbol{w})$ when $\underline{\boldsymbol{u}}=\left(\begin{array}{l}2 \\ 5 \\ 1\end{array}\right) \quad \underline{\boldsymbol{v}}=\left(\begin{array}{c}-1 \\ 4 \\ -2\end{array}\right) \quad \underline{\boldsymbol{w}}=\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$

$$
\begin{array}{rlrl}
\underline{u} \cdot(\underline{v}+\underline{w}) & \underline{u} \cdot \underline{v} & =2(-1)+5(4)+1(-2) \\
= & \underline{u} \cdot \underline{v}+\underline{u} \cdot \underline{w} & & -2+20-2 \\
= & & =16 \\
=6 & \underline{u} \cdot \underline{w} & =2(2)+5(-3)+1(1) \\
& & & 4-10)
\end{array}
$$

V-21 The diagram shows a cuboid $O P Q R, S T U V$ relative to the coordinate axes.
P is the point $(4,0,0), Q$ is $(4,2,0)$ and U is $(4,2,3)$.
M is the midpoint of OR.
N is the point on UQ such that $U N=\frac{1}{3} U Q$.

(a) State the coordinates of M and N .
(b) Express the vectors $\overrightarrow{\mathrm{VM}}$ and $\overrightarrow{\mathrm{VN}}$ in component form.
(c) Calculate the size of angle MVN.
(a) $m(0,1,0) \quad N(4,2,2)$
(b) $\quad \overrightarrow{V m}=\underline{m}-\underline{v} \quad \overrightarrow{V N}=\underline{n}-\underline{v}$

$$
\begin{aligned}
& =\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\left(\begin{array}{l}
0 \\
4 \\
3
\end{array}\right)=\left(\begin{array}{l}
4 \\
2 \\
2
\end{array}\right)-\left(\begin{array}{l}
0 \\
4 \\
3
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
-3 \\
-3
\end{array}\right)
\end{aligned}
$$

(c)

$$
\begin{array}{rlrl}
\overrightarrow{V M} \cdot \overrightarrow{V N} & =0(4)+(-3)(-2)+(-3)(-1) & \cos M U N & =\frac{\overrightarrow{V M} \cdot \overrightarrow{V N}}{|\overrightarrow{V m}||\overrightarrow{V N}|} \\
& =0+6 & & =\frac{9}{\sqrt{18} \sqrt{21}} \\
& =9 & & \\
|\overrightarrow{V m}| & =\sqrt{(0)^{2}+(-3)^{2}+(-3)^{2}} & & \\
& =\sqrt{18} & & \cos ^{-1}\left(\frac{4}{\sqrt{18} 5}\right. \\
|\overrightarrow{V N}| & =\sqrt{(4)^{2}+(-2)^{2}+(-1)^{2}} \\
& =\sqrt{21}
\end{array}
$$

V-22 An equilateral triangle of side 5 units is shown.The vectors p and q are as represented in the diagram. What is the value of $p . q$?

$$
\begin{aligned}
p \cdot q & =|f \| q| \cos \theta \\
& =5 \times 5 \times \cos 60 \\
& =\frac{25}{2}
\end{aligned}
$$

Vector Journeys

It is possible to describe a vector as a combination of other vectors. Doing this "creates" a journey.

Examples
V-23 The diagram shows a square-based pyramid $\mathrm{P}, \mathrm{QRST} . \overrightarrow{\mathrm{TS}}, \overrightarrow{\mathrm{TQ}}$ and $\overrightarrow{\mathrm{TP}}$ represent f, g and h respectively.

Express $\overrightarrow{\mathrm{RP}}$ in terms of f, g and h.

$$
\overrightarrow{R P}=-f-g+h
$$

$$
\overrightarrow{R Q}=-f \quad \overrightarrow{Q T}=-g \quad \overrightarrow{T P}=l
$$

V-24 Vectors p, q and r are represented on the diagram shown where angle $\mathrm{ADC}=30^{\circ}$.
It is also given that $|\boldsymbol{p}|=4$ and $|q|=3$.
(a) Evaluate $\boldsymbol{p} \cdot(\boldsymbol{q}+\boldsymbol{r})$ and $r \cdot(\boldsymbol{p}-\boldsymbol{q})$.
(b) Find $|q+r|$ and $|p-q|$.

$$
\text { (a) } \begin{aligned}
& \underline{p} \cdot(q+r) \\
= & \underline{p} \cdot q+p \cdot r \\
= & 4 \times 3 \times \cos 30^{\circ}+4 \times|r| \times \cos 90^{\circ} \\
= & 6 \sqrt{3}+0 \\
= & 6 \sqrt{3}
\end{aligned}
$$

$r \cdot(p-q)$
$=r \cdot f-\underline{r} \cdot q$

$$
=|r| \times 4 \times \cos 90^{\circ}-|r| \times 3 \times \cos 120^{\circ}
$$

$$
=0-\left(-\frac{3}{2}|r|\right)
$$

$$
=0+\frac{9}{4}
$$

$$
=\frac{9}{4}
$$

(b) $|q+1|$

$$
|p-q|=|-q+p| \underbrace{-q / c_{c}}_{\underline{p}}
$$

$=\sqrt{3^{2}-\left(\frac{3}{2}\right)^{2}}$
$\overrightarrow{A B}=4-|q+r|$
$=4-\frac{3 \sqrt{3}}{2}$

$=\sqrt{9-\frac{9}{4}}$
$|f-q|^{2}=\sqrt{\left(4-\frac{3 \sqrt{3}}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}}$
$=\sqrt{\frac{27}{4}}$
$=2.05$
$=\frac{\sqrt{27}}{2}=\frac{3 \sqrt{3}}{2}$
Vectors

Recap from NAT 5:

A vector has direction and magnitude

magnitude is length:

$$
\begin{aligned}
|\underline{u}| & =\sqrt{4^{2}+3^{2}} \\
& =\sqrt{25} \\
& =5 \text { units }
\end{aligned}
$$

$$
\begin{aligned}
& \underline{u}=\overrightarrow{A B}=\binom{4}{3} \quad \underline{v}=\overrightarrow{C D}=\binom{3}{1} \\
& \begin{aligned}
2 \underline{u}+3 \underline{v} & =2\binom{4}{3}+3\binom{3}{1} \\
& =\binom{8}{6}+\binom{9}{3} \\
& =\binom{17}{9}
\end{aligned}
\end{aligned}
$$

Rules work with 3D vector es too!

Colunearity: Similar to straight lime topic
${ }^{C}$

1. Find $\overrightarrow{A B}$ \& $\overrightarrow{B C}$
2. Check parallel
${ }^{\bullet}$
3. State ce parallel and common point B so collmear"
$i, j, k=$
i is movement on x-axis
j is movement on y-axis
\underline{L} is movement on z-axis

Finding coordinates of A
POINT ON A LINE:

then solve!
REMEMBER: YOU MUST WRITE COORDINATES Horizontally!!!
parallel vectors: parallel if one vector is a multiple of the other
scalar product
(DOT PRODUCT):
two ways to calculate, both are given in formulas sheet

$$
\underline{a} \cdot \underline{b}=|\underline{a}||\underline{b}| \cos \theta \quad \text { angle between }
$$ vectors \underline{a} and \underline{b}

OR

$$
\underline{\partial} \cdot \underline{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

ANGLE BETWEEN VECTORS:

