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What is a Recurrence Relation?

A recurrence relation describes a sequence in which each term is a function of the previous
term.

Terms in a recurrence relation are labelled u,, u,, u,, u; ... where u, is the starting value, u, is
the first term, u, is the second term and so on.

A basic recurrence relation can be written as

Upyq = AUy

where u, is the n‘" term in the sequence and a is a constant.

Examples

R-01 £2000 is invested at in interest rate of 4% per annum.

(a) Find a recurrence relation for the value of the investment
(b) Calculate the value of the investment after 3 years
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R-02 A city council wants to reduce the level of air pollution in the city to less than 1.0mg/m?3.
The current level is 1.4mg/m3 and the council plan to reduce this level by 5% per annum.

(@) Find a recurrence relation for the level of pollution
(b) How long will it take for the council to achieve their target?
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Linear Recurrence Relations

A linear recurrence relation has the form:
Upy1 =AUy + b

Examples

R-03 For these recurrence relations find u,.
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R-04 A company has applied to dump 200 litres of processing waste per week into a loch. It is
estimated that the natural action of the sea will remove 30% of waste per week.

(a) Find a recurrence relation for the level of processing waste in the loch at the end of

each week.
(b) What will the level of chemical waste be after
(i) 2 weeks (i) 4 weeks (i) 6 weeks
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Limit of a Sequence

A recurrence relation can be said to be either convergent or divergent. If a recurrence relation

finally settles down to one value over a period of time, it is said to be convergent and therefore
have a limit.

For a recurrence relation to be convergent then —1 < a < 1.

If u,, tends to a limit the limit can be calculated by L = 1%1

Examples

R-05 A company has applied to dump 200 litres of processing waste per week into a loch. It is
estimated that the natural action of the sea will remove 30% of waste per week. To be

given permission, the loch must have no more than 600 litres of processing waste in the
long term.

(@) Find a recurrence relation for the level of processing waste in the loch at the end of
each week

(b) Should the company be allowed to dump the processing waste into the Loch?

(c) The company agree to reduce the amount of processing waste to 170 litres per week.
Should they now be given permission?
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R-06 A frog and a toad fall to the bottom of a well that is 50 feet deep.

Each day, the frog climbs 32 feet and then rests overnight. During the night, it
slides down % of its height above the floor of the well.

The toad climbs 13 feet each day before resting.

Overnight, it slides down % of its height above the floor of the well.

Their progress can be modelled by the recurrence relations:
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where f, and 7, are the heights reached by the frog and the toad at the end of the
nth day after falling in.

(a) Calculate 7,, the height of the toad at the end of the second day.

(b) Determine whether or not either of them will eventually escape from the well.
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R-07 A recurrence relation is given by u,,,; = ku, + 5k. Given the limit of the sequence is 40,
find the value of k.
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Stating a Recurrence Relation for a Given Sequence

If given a sequence of terms, it is possible to find the recurrence relation that connects them
To do this we used simultaneous equations.

Examples

R-08 A recurrence relation is defined by u,,; = au,, + b. Find the values of a and b for the
following sequences.

(a) uO = 100, ul = 60, uz = 52
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Linked Recurrence Relations

Linked recurrence relations require us to use two different formulae to solve one problem.
Examples

R-09 A car hire company has depots in Glasgow and Perth. Between them they have 200 cars.

It can be shown that of the cars hired in Perth, 80% are returned there with the
remaining cars returned to Glasgow.

Of the cars hired in Glasgow 60% are returned there while 40% are returned to Perth.
How many cars should be stored at each depot?
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Summary

Rec uRRENCE
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