HIGHER MATHS

Further Calculus

Notes with Examples

Differentiating $\sin x$ and $\cos x$

In order to differentiate expressions that include trigonometric functions we must follow these two rules (these are given in an assessment).

$$
\begin{aligned}
& f(x)=\sin a x \\
& f^{\prime}(x)=a \cos a x
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=\cos a x \\
& g^{\prime}(x)=-a \sin a x
\end{aligned}
$$

When we differentiate trigonometric functions we must use radians.

Examples

FC-01 Differentiate $y=4 \cos x$ with respect to x.

$$
\begin{aligned}
y & =4 \cos x \\
\frac{d y}{d x} & =-4 \sin x
\end{aligned}
$$

FC-02 Find the equation of the tangent to the curve $y=\cos x$ when $x=\frac{\pi}{3}$.

$$
\begin{aligned}
y & =\cos x \\
\frac{d y}{d x} & =-\sin x
\end{aligned}
$$

for Point:

For gradient :
$\frac{d y}{d x}=-\sin \frac{\pi}{3}=-\frac{\sqrt{3}}{2}$

$$
m=\frac{-\sqrt{3}}{2}
$$

Equation:

$$
\begin{array}{r}
y-\frac{1}{2}=-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right) \\
2 y-1=-\frac{\sqrt{3} x+\frac{\sqrt{3} \pi}{3}}{\sqrt{3} x+2 y-1-\frac{\sqrt{3} \pi}{3}=0}
\end{array}
$$

FC-03 A function is defined by $f(x)=2 \sin x+4 \cos x$. Find $f^{\prime}\left(\frac{\pi}{6}\right)$.

$$
\begin{aligned}
f(x) & =2 \sin x+4 \cos x \\
f^{\prime}(x) & =2 \cos x-4 \sin x \\
f^{\prime}\left(\frac{\pi}{6}\right) & =2 \cos \frac{\pi}{6}-4 \sin \frac{\pi}{6} \\
& =2 \times \frac{\sqrt{3}}{2}-4 \times \frac{1}{2} \\
& =\frac{2 \sqrt{3}}{2}-2 \\
& =\sqrt{3}-2
\end{aligned}
$$

FC-04 Differentiate $y=\sin \left(4 x-\frac{\pi}{2}\right)$.

$$
\begin{aligned}
& y=\sin \left(4 x-\frac{\pi}{2}\right) \\
& \frac{d y}{d x}=4 \cos \left(4 x-\frac{\pi}{2}\right)
\end{aligned}
$$

The Chain Rule

It is possible to differentiate composite functions such as $f(g(x))$ using the chain rule. The chain rule is:

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \times g^{\prime}(x)
$$

Basically differentiate the outer function, leave the bracket and multiply by the derivative of the bracket.

This rule is not given in an assessment.

Examples

FC-05 Differentiate $y=(3 u-5)^{4}$ with respect to u.

$$
\begin{aligned}
y & =(3 u-5)^{4} \\
& =4(3 u-5)^{3} \times 3 \\
& =12(3 u-5)^{3}
\end{aligned}
$$

FC-06 A function is defined as $f(x)=3 \sin ^{5} x$. Find $f^{\prime}(x)$.

$$
\begin{aligned}
f(x) & =3 \sin ^{5} x \\
& =3(\sin x)^{5} \\
f^{\prime}(x) & =15(\sin x)^{4} \times \cos x \\
& =15 \cos x \sin ^{4} x
\end{aligned}
$$

FC-07 Differentiate $y=\sqrt{5 x^{2}+7}$ with respect to x.

$$
\begin{aligned}
y & =\sqrt{5 x^{2}+7} \\
& =\left(5 x^{2}+7\right)^{1 / 2} \\
\frac{d y}{d x} & =\frac{1}{2}\left(5 x^{2}+7\right)^{-1 / 2} \times 10 x \\
& =5 x\left(5 x^{2}+7\right)^{-1 / 2} \\
& =\frac{5 x}{\sqrt{\left(5 x^{2}+7\right)}}
\end{aligned}
$$

FC-08 A function is defined as $f(x)=\frac{1}{(3 x-2)^{4}}$. Find $f^{\prime}(1)$.

$$
\begin{array}{rlrl}
f(x) & =\frac{1}{(3 x-2)^{4}} \\
& =(3 x-2)^{-4} \\
f^{\prime}(x) & =-4(3 x-2)^{-5} \times 3 \quad f^{-}(1) & =-\frac{12}{(3(1)-2)^{5}} \\
& =-12(3 x-2)^{-5} & & =\frac{-12}{(1)^{5}} \\
& =\frac{-12}{(3 x-2)^{5}} & & =-12
\end{array}
$$

FC-09 Differentiate $y=\sqrt[3]{(4 x+3)^{5}}$ with respect to x.

$$
\begin{aligned}
y & =\sqrt[3]{(4 x+3)^{5}} \\
& =(4 x+3)^{5 / 3} \\
\frac{d y}{d x} & =\frac{5}{3}(4 x+3)^{2 / 3} \times 4 \\
& =\frac{20}{3}(4 x+3)^{2 / 3} \\
& =\frac{20}{3} \sqrt[3]{(4 x+3)^{2}}
\end{aligned}
$$

In order to integrate expressions that include trigonometric functions we must follow these two rules (these are given in an assessment).

$$
\int \sin a x=-\frac{1}{a} \cos a x+C
$$

$$
\int \cos a x=\frac{1}{a} \sin a x+C
$$

When we integrate trigonometric functions we must use radians.

Examples
FC-10 Find $\int(3 \sin x+5 \cos x) d x$.

$$
\begin{aligned}
& \int(3 \sin x+5 \cos x) d x \\
= & -3 \cos x+5 \sin x+c
\end{aligned}
$$

FC-11 Find $\int_{0}^{\frac{\pi}{3}}(3 \cos x-2 \sin x) d x$.

$$
\begin{aligned}
& \int_{0}^{\pi / 3}(3 \cos x-2 \sin x) d x \\
= & {[3 \sin x+2 \cos x]_{0}^{\pi / 3} } \\
= & \left(3 \sin \frac{\pi}{3}+2 \cos \frac{\pi}{3}\right)-(3 \sin 0+2 \cos 0) \\
= & \left(\frac{3 \sqrt{3}}{2}+2\left(\frac{1}{2}\right)\right)-(3(0)+2(1)) \\
= & \frac{3 \sqrt{3}}{2}+1-2 \\
= & \frac{3 \sqrt{3}}{2}-1
\end{aligned}
$$

PC- 12 Find the value of $\int_{0}^{2}\left(\frac{1}{4} \sin x\right) d x$.

FC-13 The diagram shows part of the graph of $y=a \cos b x$.
The shaded area is $\frac{1}{2}$ unit 2.

What is the value of $\int_{0}^{\frac{3 \pi}{4}}(a \cos b x) d x$?

Area above $A \times 15=\frac{1}{2}$
Area below axis $=-1$

$$
\int_{0}^{\frac{3 \pi}{4}}(a \cos b x) d x=-\frac{1}{2}
$$

Special Integrals

It is possible to integrate functions in the form of $(a x+b)^{n}$ by following this rule.

$$
\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+C
$$

Basically increase the power by one and divide by the new power, leave the bracket and divide by the derivative of the bracket.

This rule is not given in an assessment.
Examples
FC-14 Find $\int(x-5)^{6} d x$.

$$
\begin{aligned}
& \int(x-5)^{6} d x \\
= & \frac{(x-1)^{7}}{7} \times \frac{1}{1} \\
= & \frac{(x-5)^{7}}{7}+C
\end{aligned}
$$

FC-15 Find $\int(4 x+7)^{5} d x$.

$$
\begin{aligned}
& \int(4 x+7)^{5} d x \\
= & \frac{(4 x+7)^{6}}{6} \times \frac{1}{4} \\
= & \frac{(4 x+7)^{6}}{24}+c
\end{aligned}
$$

FC-16 Find $\int \frac{1}{\sqrt{(4 x+7)}} d x$.

$$
\begin{aligned}
& \int \frac{1}{\sqrt{4 x+7}} d x \\
= & \int(4 x+7)^{-1 / 2} d x \\
= & \frac{(4 x+7)^{1 / 2}}{1 / 2} \times \frac{1}{4}+C \\
= & \frac{\sqrt{4 x+7}}{2}+C
\end{aligned}
$$

FC-17 Evaluate $\int_{0}^{3} \frac{1}{\sqrt{(3 x+7)^{3}}} d x$.

$$
\begin{aligned}
& \int_{0}^{3} \frac{1}{\sqrt{(3 x+7)^{3}}} d x \\
= & \int_{0}^{3}(3 x+7)^{-3 / 2} d x \\
= & {\left[\frac{(3 x+7)^{-1 / 2}}{-1 / 2} \times \frac{1}{3}\right]_{0}^{3} } \\
= & {\left[-\frac{2}{3 \sqrt{3 x+7}}\right]_{0}^{3} } \\
= & \left(\frac{-2}{3 \sqrt{3(3)+7}}\right)-\left(\frac{-2}{3 \sqrt{3(0)+7}}\right) \\
= & \frac{-2}{12}+\frac{2}{3 \sqrt{7}} \\
= & \frac{2}{3 \sqrt{7}}-\frac{1}{6}
\end{aligned}
$$

Because integration is the reverse process of differentiation then we can use differentiation to integrate complex functions.

Examples
FC-18 (a) Given that $y=\left(x^{2}+7\right)^{\frac{1}{2}}$, find $\frac{d y}{d x}$.
(b) Hence find $\int \frac{4 x}{\sqrt{x^{2}+7}} d x$.

$$
\text { (a) } \begin{aligned}
y & =\left(x^{2}+7\right)^{1 / 2} & \text { (b) } & \int \frac{4}{\sqrt{x^{2}+7}} d x \\
\frac{d y}{d x} & =\frac{1}{2}\left(x^{2}+7\right)^{-1 / 2} \times 2 x & & =\int 4\left(x^{2}+7\right)^{-1 / 2} d x \\
& =\frac{x}{\sqrt{x^{2}+7}} & & =4\left(x^{2}+7\right)^{1 / 2}+c
\end{aligned}
$$

Further Calculus

Differentiation

TR 16:

$$
\begin{array}{ll}
y=\sin x & y=\cos x \\
\frac{d y}{d x}=\cos x & \frac{d y}{d x}=-\sin x
\end{array}
$$

given in formulae sheet
REMEMBER: Au angles must

ChAN RULE:

$$
\begin{aligned}
& y=(\partial x+b)^{n} \\
& \frac{d y}{d x}=n(\partial x+b)^{n-1} \times \partial
\end{aligned}
$$

"enultiply by power then decrease power by 1. also multiply by derivative of the brocket" ${ }^{9}$

$$
\begin{aligned}
y & =(4 x+3)^{5} \\
\frac{d y}{d x} & =5(4 x+3)^{4} \times 4 \\
& =20(4 x+3)^{4} \\
y & =\left(x^{3}+4\right)^{7} \\
\frac{d y}{d x} & =7\left(x^{3}+4\right)^{6} \times 3 x^{2} \\
& =21 x^{2}\left(x^{3}+4\right)^{6}
\end{aligned}
$$

integration

TRIG:

$$
\begin{array}{ll}
\int \sin x d x \quad \int \cos x d x \\
=-\cos x+c \quad= & \sin x+c \\
\int \sin (a x+b) d x \quad \int \cos (a x+b) d x \\
= & -\frac{1}{a} \cos (a x+b)+c=\frac{1}{a} \sin (a x+b)+c
\end{array}
$$

InTEGRATE $(a x+b)^{n}$:

$$
\begin{aligned}
& \int(a x+b)^{n} d x \\
& =\frac{(\partial x+b)^{n+1}}{\partial(n+1)}+c
\end{aligned}
$$

Pe increase the power by 1 and dwide by new power and derivatwe of bracket $"$

$$
\begin{aligned}
& \int(4 x+2)^{5} d x \\
= & \frac{(4 x+2)^{6}}{6 \times 4}+c \\
= & \frac{(4 x+2)^{6}}{24}+c \\
& \int \frac{\left(3 x^{2}+1\right)^{7} d x}{8 \times 6 x}+c \\
= & \frac{\left(3 x^{2}+1\right)^{8}}{48 x}+c
\end{aligned}
$$

