HIGHER MATHS

Exponentials \& Logarithms

Notes with Examples

Exponential Growth \& Decay Graphs

You should be familiar with the graphs of exponential functions. The graph of the exponential function $y=a^{x}$ will pass through $(0,1)$ and $(1, a)$ where a is referred to as the base.

Exponential growth when $a>1$

Exponential decay when $a<1$

Examples

LE-01 Sketch the graph of
(a) $y=3^{x}$
(b) $y=0.2^{x}$

LE-02 The graph below shows the function $f(x)=3^{x}+5$. State the coordinates of P and Q .

A logarithm is the inverse function of an exponential function and we have already seen the graph of a logarithmic function previously in the course.

The graph of the logarithmic function $y=\log _{a} x$ will pass through $(1,0)$ and $(a, 1)$ where a is referred to as the base.

To work with logarithms you need to understand what they mean.
In general, $\log _{a} x$ means " a to the power of what gives the value of x ". This means we can change between logarithmic and exponential form using:

$$
y=\log _{a} x \leftrightarrow a^{y}=x
$$

Examples

LE-03 Evaluate

(a) $\quad \log _{3} 9$
(b) $\quad \log _{5} 125$
(C) $\quad \log _{2} 64$
(d) $\quad \log _{16} 4$

3^{x}	$=9$
x	$=2$
$\log _{3} 9$	$=2$

$$
5^{x}=125
$$

$$
2^{x}=64
$$

$$
16^{x}=4
$$

$x=3$
$x=6$
$x=1 / 2$
$\log _{3} 9=2$
$\log _{5} 125=3$

$$
\log _{16} 4=1 / 2
$$

LE-04 Calculate the value of x
(a) $\log _{x} 16=2$

$$
\begin{aligned}
x^{2} & =16 \\
x & =4
\end{aligned}
$$

(b) $\log _{2} x=6$
(c) $\quad \log _{7} 7=x$

$$
\begin{aligned}
& 7^{x}=7 \\
& x=1
\end{aligned}
$$

There are several laws of Logarithms you must remember.

Addition of Logs

When two logarithms with the same base are added together, the terms can be combined by multiplying the arguments.

$$
\log _{a} x+\log _{a} y=\log _{a}(x y)
$$

Subtraction of Logs

When two logarithms with the same base are subtracted, the terms can be combined by dividing the arguments.

$$
\log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right)
$$

Powers of Logs

When dealing with a logarithm whose argument has a power, we can move the power to the front of the logarithm as a multiplier. This also works in reverse.

$$
\log _{a} x^{n}=n \log _{a} x
$$

Special cases

There are two special logarithms we should remember.

Examples

$$
\log _{a} 1=0
$$

$$
\log _{a} a=1
$$

LE-05 Evaluate $\log _{8} 2+\log _{8} 32$

LE-06 Evaluate $\log _{5} 250-\log _{5} 2$

$$
\begin{aligned}
& \log _{5} 250-\log _{5} 2 \\
= & \log _{5}\left(\frac{250}{2}\right) \\
= & \log _{5} 125 \\
= & 3
\end{aligned}
$$

LE-07 Evaluate $2 \log _{2} 4-3 \log _{2} 2$

$$
\begin{aligned}
& 2 \log _{2} 4-3 \log _{2} 2 \\
= & \log _{2} 4^{2}-\log _{2} 2^{3} \\
= & \log _{2} 16-\log _{2} 8 \\
= & \log _{2}\left(\frac{16}{8}\right) \\
= & \log _{2} 2 \\
= & 1
\end{aligned}
$$

LE-08 Evaluate $5 \log _{8} 2+\log _{8} 4-\log _{8} 16$

$$
\begin{aligned}
& 5 \log _{8} 2+\log _{8} 4-\log _{8} 16 \\
= & \log _{8} 2^{5}+\log _{8} 4-\log _{8} 16 \\
= & \log _{8}\left(\frac{32 \times 4}{16}\right) \longleftarrow\left\{\begin{array}{l}
\text { You can do this } m \\
\text { Stages if you want }
\end{array}\right\} \\
= & \log _{8} 8 \\
= & 1
\end{aligned}
$$

Exponential and Logarithmic Functions with base e

The exponential function e^{x}, base e is a very special function. We use this function in most exponential calculations and $e=2.718 \ldots .$.

The inverse function to e^{x} is called the natural logarithm and can be denoted by either $\log _{e} x$ or $\ln x$.

Examples

LE-09 Evaluate
(a) e^{4}
(b) $e^{7.2}$
e^{4}
$e^{7.2}$
$=54.598$
$=1339.43$
$=54.6$
$=1339.4$

LE-10 The population of sea monkeys in a tank increases exponentially and can be expressed by the formula

$$
P(t)=2 e^{0.6 t}
$$

where $P(t)$ is the number of sea monkey after t weeks.
(a) How many sea monkeys are in the tank to start initially?
(b) How many sea monkeys will there be after 5 weeks?
(a) $P(t)=2 e^{0.6 t}$
(b) $\quad P(5)=2 e^{0.6(5)}$
$P(0)=2 e^{0.6(0)}$
$=2 e^{3}$
$P(0)=2$

$$
\begin{aligned}
& =40.17 \\
P(5) & =40
\end{aligned}
$$

LE-11 The number of bacteria in a peri dish is given by the formula $B(t)=20 e^{1.2 t}$, where t is the time in hours.
(a) How many bacteria are there at time zero?
(b) How long will it take for the number of bacteria to triple?
(a)

$$
\begin{array}{rlrl}
B(t) & =20 e^{1.2 t} & \text { (b) TO TRIPLE } & B(t)=60 \\
B(0) & =20 e^{1.2(0)} & 60 & =20 e^{1.2 t} \\
B(0) & =20 & e^{1.2 t} & =\frac{60}{20} \\
e^{1.2 t} & =3 \\
1.2 t & =\ln 3 \\
t & =\frac{\ln 3}{1.2} \quad \begin{array}{l}
\text { IT WILL TAKE } \\
\text { 0.92 HOURS FIn } \\
\text { THE BACTERIA TO } \\
\text { TRIPLE }
\end{array} \\
t & =0.92
\end{array}
$$

LE-12 The formula $A=A_{0} e^{-k t}$ gives the amount of radioactive substance after time t minutes. After 4 minutes 50 g is reduced to 45 g .
(a) Find the value of k to two significant figures?
(b) How long does it take for the substance to reduce to half its original weight?
(a)

$$
\begin{array}{rlrl}
A & =A_{0} e^{-k t} & \text { (b) FOR HALF WE16HT } \quad A & =\frac{1}{2} A_{0} \\
A_{0}=50 \quad A & =45 \quad t=4 & A & =A_{0} e^{-0.026 t} \\
45 & =50 e^{-4 k} & \frac{1}{2} A_{0} & =A_{0} e^{-0.026 t} \\
e^{-4 k} & =\frac{45}{50} & e^{-0.026 t} & =\frac{1}{2} \\
-4 k & =\ln (0.9) \\
k & =\frac{\ln (0.9)}{-4} & -0.026 t & =\ln \left(\frac{1}{2}\right) \\
& =0.02634 & =\frac{\ln \left(\frac{1}{2}\right)}{-0.026} \\
k & =0.026 & t & =26.7
\end{array}
$$

Exponential and Logarithmic Equations

Using the Laws of Logarithms and the connection between logarithms and exponentials, we can solve equations.

Examples

LE-13 Solve
(a) $5^{x}=35$
$5^{x}=35$
$\log 5^{x}=\log 35$
$x \log 5=\log 35$
$x=\frac{\log 35}{\log 5}$
$x=2.2$
(b) $\quad 5^{x}=\frac{1}{10}$
(C) $e^{x}=0.28$
$5^{x}=\frac{1}{10}$
$e^{x}=0.28$
$\log 5^{x}=\log \frac{1}{10}$
$\ln e^{x}=\ln 0.28$
$x \log 5=\log \frac{1}{10}$
$x \ln e=\ln 0.28$
$x=\frac{\log \frac{1}{10}}{\log 5}$
$x=-1.27$
$x=-1.43$

LE-14 Solve for $x>0, \log _{a} x+\log _{a} 2=\log _{a} 10$

$$
\begin{aligned}
\log _{a} x+\log _{a} 2 & =\log _{a} 10 \\
\log _{a} x & =\log _{a} 10 \cdot \log _{a} 2 \\
\log _{a} x & =\log _{a}\left(\frac{10}{2}\right) \\
\log _{a} x & =\log _{a} 5 \\
x & =5
\end{aligned}
$$

LE-15 Solve for $x>-1, \log _{5}(x+1)+\log _{5}(x-3)=1$

$$
\begin{array}{rl}
\log _{5}(x+1)+\log _{5}(x-3) & =1 \\
\log _{5}(x+1)(x-3) & =\log _{5} 5 \\
x^{2}-3 x+x-3 & =5 \\
x^{2}-2 x-8 & =0 \\
(x+2)(x-4) & =0 \\
x=-2 x & x
\end{array}
$$

LE-16 Solve for $x>4, \log _{e}(x-4)+\log _{e}(2 x+5)=\log _{e} 3 x$

$$
\begin{array}{rl}
\log _{e}(x-4)+\log _{e}(2 x+5) & =\log _{e} 3 x \\
\log _{e}(x-4)(2 x+5) & =\log _{e} 3 x \\
2 x^{2}+5 x-8 x-20 & =3 x \\
2 x^{2}-6 x-20 & =0 \\
(2 x-10)(x+2) & =0 \\
x=5 x & x=-2
\end{array}
$$

Experimental Data

Analysing data from experiments may result in a relationship that indicates exponential growth. To fully analyse this data and the relationship the graph must be in the form of a straight line. We do this by using logarithms.

Data in the form $y=k x^{n}$
By taking logs of both sides of the equation and simplifying we can write in the form of the equation of a straight line.

$$
\begin{aligned}
y & =k x^{n} \\
\log y & =\log k x^{n} \\
\log y & =\log k+\log x^{n} \\
\log y & =\log k+n \log x \\
\log y & =n \log x+\log k \\
y & =m x+c
\end{aligned}
$$

where $m=n$ and $c=\log k$.
Data in the form $y=a b^{x}$

By taking logs of both sides of the equation and simplifying we can write in the form of the equation of a straight line.

$$
\begin{aligned}
y & =a b^{x} \\
\log y & =\log a b^{x} \\
\log y & =\log a+\log b^{x} \\
\log y & =\log a+x \log b \\
\log y & =x \log b+\log a \\
y & =m x+c
\end{aligned}
$$

where $m=\log b$ and $c=\log a$.

Examples

LE-17 Two variables, x and y, are related by the equation

$$
y=k a^{x} .
$$

When $\log _{9} y$ is plotted against x, a straight line passing through the points $(0,2)$ and $(6,5)$ is obtained, as shown in the diagram.

$$
\begin{aligned}
y & =k a^{x} \\
\log _{9} y & =\log _{9} k a x\left\{\begin{array}{c}
\text { use } \left.\log _{q} a\right\} \\
\text { its is the }
\end{array}\right\} \\
& =\log _{9} k+\log _{9} a^{x} \\
& =\log _{9} k+x \log _{9} a \\
\log _{9} y & =x \log _{9} a+\log _{9} k \\
m & =\log _{9} a \\
c & =\log _{q} k
\end{aligned}
$$

Find the values of k and a.

$$
m=\frac{V}{H}=\frac{3}{6}=\frac{1}{2}
$$

LE-18 Two variables, x and y, are connected by the equation $y=k x^{n}$.
The graph of $\log _{2} y$ against $\log _{2} x$ is a straight line as shown.

Find the values of k and n.

$$
y=k x^{n}
$$

$$
\log _{2} y=\log _{2} k+\log _{2} x^{n}
$$

$$
\log _{2} y=\log _{2} k+n \log _{2} x
$$

$$
\log _{2} y=n \log _{2} x+\log _{2} k
$$

$$
m=n \quad c=\log _{2} k
$$

$n=\frac{1}{4}$

LoGS \& Exponential

GRAPHS:

$$
y=\log _{d} x
$$

$$
y=a^{x}
$$

QUESTION
can you move these graphs or get back to the original graph if given a "moved" graph?

WHAT IS A LOG?: $\log _{3} 9$ means " 3 to the power of what equals 9?"
so $\quad \log _{3} 9=2$
that means we can swap between logs a exponentials

$$
\log _{a} y=x \Longleftrightarrow y=a^{x}
$$

Rules of LoGs:
these work both ways!

$$
\begin{aligned}
\log _{a} x+\log _{a} y & =\log _{a} x y \\
\log _{a} x-\log _{a} y & \left.=\log _{a}\left(\frac{x}{y}\right)\right] \\
\log _{a} x^{n} & =n \log _{a} x \\
\log _{a} y & =0 \\
\log _{a} a & =1
\end{aligned}
$$

you must remember these!

EXPERIMENTAL DATA:
this should always be a straight lime
(1) Plot $\log y$ vs $\log x$

$$
\begin{aligned}
y & =k x^{n} \\
\log y & =\log k x^{n} \\
& =\log k+\log x^{n} \\
& =\log k+n \log x
\end{aligned}
$$

so $\log k=C(y \bar{m} t)$

$$
n=\operatorname{gradient}=n \log x+\log k
$$

(2) Plot $\log y$ vs x

$$
\begin{aligned}
\log y \uparrow & =a b^{x} \\
\log y & =\log a b^{x} \\
& =\log a+\log b^{x} \\
\text { So } \log a=c(y \text {-int }) & =\log a+x \log b \\
& =x \log b+\log d
\end{aligned}
$$

