Quest

Wave questions

[SQA]	1.	Solve the equation $2 \sin x^\circ - 3 \cos x^\circ = 2.5$ in the interval $0 \le x < 360$.	8
	2.	(<i>a</i>) $12 \cos x^{\circ} - 5 \sin x^{\circ}$ can be expressed in the form $k \cos(x + a)^{\circ}$, where $k > 0$ and $0 \le a < 360$. Calculate the values of <i>k</i> and <i>a</i> .	4
		 (<i>b</i>) (i) Hence state the maximum and minimum values of 12 cos x° − 5 sin x°. (ii) Determine the values of <i>x</i>, in the interval 0 ≤ <i>x</i> < 360, at which these maximum and minimum values occur. 	3
[SQA]	3.	(a) Express $\sin x^{\circ} - 3\cos x^{\circ}$ in the form $k\sin(x-a)^{\circ}$ where $k > 0$ and $0 \le a < 360$. Find the values of k and a.	4
		(b) Find the maximum value of $5 + \sin x^\circ - 3\cos x^\circ$ and state a value of x for which this maximum occurs.	2
[SQA]	4.		
		(a) Show that $2\cos(x^\circ + 30^\circ) - \sin x^\circ$ can be written as $\sqrt{3}\cos x^\circ - 2\sin x^\circ$.	3
		(<i>b</i>) Express $\sqrt{3}\cos x^{\circ} - 2\sin x^{\circ}$ in the form $k\cos(x^{\circ} + \alpha^{\circ})$ where $k > 0$ and $0 \le \alpha \le 360$ and find the values of k and α .	4
		(c) Hence, or otherwise, solve the equation $2\cos(x^{\circ} + 30^{\circ}) = \sin x^{\circ} + 1$, $0 \le x \le 360$.	3
[SQA]	5.	(a) Express $3\sin x^\circ - \cos x^\circ$ in the form $k\sin(x-\alpha)^\circ$, where $k > 0$ and $0 \le \alpha \le 90$.	(4)
		(b) Hence find algebraically the values of x between 0 and 180 for which $3 \sin x^2 - \cos x^2 = \sqrt{5}$	(1)
		(c) Find the range of values of x between 0 and 180 for which	(4)
		$3\sin x - \cos x^{\circ} \le \sqrt{5}$.	(2)

[SQA] 6. Find the maximum value of $\cos x - \sin x$ and the value of x for which it occurs in the interval $0 \le x \le 2\pi$.

[END OF QUESTIONS]

6