Wave questions

1. Solve the equation $2 \sin x^{\circ}-3 \cos x^{\circ}=2.5$ in the interval $0 \leq x<360$.
2. (a) $12 \cos x^{\circ}-5 \sin x^{\circ}$ can be expressed in the form $k \cos (x+a)^{\circ}$, where $k>0$ and $0 \leq a<360$.

Calculate the values of k and a.
(b) (i) Hence state the maximum and minimum values of $12 \cos x^{\circ}-5 \sin x^{\circ}$.
(ii) Determine the values of x, in the interval $0 \leq x<360$, at which these maximum and minimum values occur.
3. (a) Express $\sin x^{\circ}-3 \cos x^{\circ}$ in the form $k \sin (x-a)^{\circ}$ where $k>0$ and $0 \leq a<360$. Find the values of k and a.
(b) Find the maximum value of $5+\sin x^{\circ}-3 \cos x^{\circ}$ and state a value of x for which this maximum occurs.
4.
(a) Show that $2 \cos \left(x^{\circ}+30^{\circ}\right)-\sin x^{\circ}$ can be written as $\sqrt{3} \cos x^{\circ}-2 \sin x^{\circ}$.
(b) Express $\sqrt{3} \cos x^{\circ}-2 \sin x^{\circ}$ in the form $k \cos \left(x^{\circ}+\alpha^{\circ}\right)$ where $k>0$ and $0 \leq \alpha \leq 360$ and find the values of k and α.
(c) Hence, or otherwise, solve the equation $2 \cos \left(x^{\circ}+30^{\circ}\right)=\sin x^{\circ}+1$, $0 \leq x \leq 360$.
5. (a) Express $3 \sin x^{\circ}-\cos x^{\circ}$ in the form $k \sin (x-\alpha)^{\circ}$, where $k>0$ and $0 \leq \alpha \leq 90$.
(b) Hence find algebraically the values of x between 0 and 180 for which $3 \sin x^{\circ}-\cos x^{\circ}=\sqrt{5}$.
(c) Find the range of values of x between 0 and 180 for which $3 \sin x^{\circ}-\cos x^{\circ} \leq \sqrt{5}$.
6. Find the maximum value of $\cos x-\sin x$ and the value of x for which it occurs in the interval $0 \leq x \leq 2 \pi$.

