Wave questions

[SQA] 1. Solve the equation $2 \sin x^\circ - 3 \cos x^\circ = 2.5$ in the interval $0 \le x < 360$.

Part	Marks	Level	Calc.	Content	Answer	U3 OC4
	8	A/B	CR	T16	100·2°, 192·4°	1999 P2 Q9
.1 .2 .3 .4 .5 .6	strategy:e.gk sin(x - k sin x cos a - k cos x sin a k cos a = 2 and k sin a = 3 k = $\sqrt{13}$ a = 56.3 sin(x - 56.3) = $\frac{2.5}{\sqrt{13}}$			stated or implie stated explicitly stated explicitly	d by \bullet^6 kcos(x-a) kcosxcosa 4 kcosa = -3, k = $\sqrt{13}$, ta: a = 146.3 cos(x - 146.3 = 4 x = 192.4, 4 x = 192.4, 1	$k \sin x \sin a$ $k \sin a = 2$ $na = -\frac{2}{3}$ a) = 0.693 6.1, 313.9 60.2 00.2
•7 •8 OR •7 •8	x - 56.3 = 100.2° an x - 56.3 = 192.4°	43.9, 136 1d 192.4° 43.9, x=	5.1 9 100.2°	136.1 stated or implie appearance of 192.4 in	d by the $k = \frac{8}{10} + \frac{8}{100} + \frac{100}{100} + 100$	kcos(x+a) $kcos x cos a - k sin x sin$ $kcos a = -3, k sin a = -3, k$

8

Page 1

Calculate the values of *k* and *a*.

- (b) (i) Hence state the maximum and minimum values of $12 \cos x^{\circ} 5 \sin x^{\circ}$.
 - (ii) Determine the values of x, in the interval $0 \le x < 360$, at which these maximum and minimum values occur.

Part	Marks	Level	Calc.	Content	Answer U3 OC4
<i>(a)</i>	4	С	CN	T13	k = 13, a = 22.6 2010 P2 Q2
(bi)	1	С	CN	T14	max 13, min -13
(bii)	2	С	CN	T14	max at 337·4, min at 157·4
•1 •2 •3 •4	ss: use ic: con pd: pro pd: pro	addition npare co cess <i>k</i> cess <i>a</i>	n formu efficien	ıla ts	• ¹ $k \cos x^{\circ} \cos a^{\circ} - k \sin x^{\circ} \sin a^{\circ}$ • ² $k \cos a^{\circ} = 12$ and $k \sin a^{\circ} = 5$ • ³ 13 (do not accept $\sqrt{169}$) • ⁴ 22.6 (accept any answer which rounds to 23)
•5	ss: stat	e maxin	num and	d minimum	5 10 10
• ⁰	ic: fine value pd: fine	d x cor d x cor	respond	ding to max.	 ⁶ 13, -13 ⁶ maximum at 337.4 and no others ⁷ minimum at 157.4 and no others
	value		1	0	

[SQA] 3. (a) Express $\sin x^{\circ} - 3\cos x^{\circ}$ in the form $k\sin(x-a)^{\circ}$ where k > 0 and $0 \le a < 360$. Find the values of k and a.

4

(b) Find the maximum value of $5 + \sin x^\circ - 3\cos x^\circ$ and state a value of x for which this maximum occurs.

2

Part	Marks	Level	Calc.	Content	Answer	U3 OC4
<i>(a)</i>	4	С	CR	T13		1992 P1 Q7
(b)	1	С	CR	T14		
<i>(b)</i>	1	A/B	CR	T14		
• ¹ • ² • ³	$k \cos a =$ $k \sin a =$ $k = \sqrt{10}$	= 1 = 3		• ⁵ maximum • ⁶ angle = 10	$n = 5 + \sqrt{10}$ 61.6°	
•4	a = 71.6	1				

3

4

Quest

[SQA] 4.

- (a) Show that $2\cos(x^\circ + 30^\circ) \sin x^\circ$ can be written as $\sqrt{3}\cos x^\circ 2\sin x^\circ$.
- (*b*) Express $\sqrt{3}\cos x^{\circ} 2\sin x^{\circ}$ in the form $k\cos(x^{\circ} + \alpha^{\circ})$ where k > 0 and $0 \le \alpha \le 360$ and find the values of k and α .
- (c) Hence, or otherwise, solve the equation $2\cos(x^{\circ} + 30^{\circ}) = \sin x^{\circ} + 1$, $0 \le x \le 360$.

Part	Marks	Level	Calc.	Content	Answer	U3 OC4
<i>(a)</i>	3	С	CR	T8, T3		1990 P2 Q5
(b)	4	С	CR	T13		
(C)	3	A/B	CR	T16		

(a) $\cdot^{1} \cos(x+30)^{\circ} = \cos x^{\circ} \cos 30^{\circ} - \sin x^{\circ} \sin 30^{\circ}$

•²
$$\frac{\sqrt{3}}{2}\cos x^{\circ} - \frac{1}{2}\sin x^{\circ}$$

•³ $2 \times \left(\frac{\sqrt{3}}{2}\cos x^{\circ} - \frac{1}{2}\sin x^{\circ}\right) - \sin x^{\circ}$

- (b) 4 $k\cos x^{\circ}\cos \alpha^{\circ} k\sin x^{\circ}\sin \alpha^{\circ}$
 - $k\sin\alpha^\circ = \sqrt{3}$ and $k\sin\alpha^\circ = 1$

•
$$k = \sqrt{7} \overrightarrow{OG} = 426$$

- •⁷ $\alpha = 49.1$
- (c) $\cdot^8 \sqrt{7}\cos(x+49.1)^\circ = 1$
 - $x = 18.7^{\circ}$
 - $x = 243.1^{\circ}$

4

3

3

(a)	Express $3\sin x^\circ - \cos x^\circ$ in the form $k\sin(x-\alpha)^\circ$, where						
	$k > 0$ and $0 \le \alpha \le 90$.	(4)					
(b)	Hence find algebraically the values of x between 0 and 180 for which $3\sin x^\circ - \cos x^\circ = \sqrt{5}$.						
(c)	Find the range of values of x between 0 and 180 for which $3\sin x^\circ - \cos x^\circ \le \sqrt{5}$.	(2)					
	(a) (b) (c)	 (a) Express 3sin x° - cos x° in the form ksin(x - α)°, where k > 0 and 0 ≤ α ≤ 90. (b) Hence find algebraically the values of x between 0 and 180 for which 3sin x° - cos x° = √5. (c) Find the range of values of x between 0 and 180 for which 3sin x° - cos x° ≤ √5. 					

D (1 1	T 1	0.1					
Part	Marks	Level	Calc.	Content	Answer	U3 OC4		
(<i>a</i>)	4	C	CR	T13		1994 P2 Q5		
(b)	4	C	CR	T16				
(C)	2	A/B	CR	T16		1		
(a)	• ¹ k($k(\sin x \cos \alpha - \cos x \sin \alpha)$ or equivalent						
	• ² kc	$\cos \alpha = 3$	and ks	$in \alpha = 1$				
	• ³ k=	$k = \sqrt{10}$						
	• ⁴ α	$\alpha = 18 \cdot 4$						
(b)	• ⁵ √1	$\sqrt{10}\sin(x-18\cdot 4)^\circ = \sqrt{5}$						
	• ⁶ sir	• $\sin(x-18\cdot 4)^\circ = \frac{1}{\sqrt{2}}$ or equivalent						
	•7 63	63 • 4						
	• ⁸ 15	153-4						
(c)	• ⁹ sta	strategy stated or implied						
	•10 $x \le 63.4$ and $x \ge 153.4$							

6

[SQA] 6. Find the maximum value of $\cos x - \sin x$ and the value of x for which it occurs in the interval $0 \le x \le 2\pi$.

Part	Marks	Level	Calc.	Content	Answer U3 OC4
	6	A/B	CN	T14	max value $\sqrt{2}$ when 2000 P1 Q10
					$x = \frac{7\pi}{4}$
•1 •2 •3 •4 •5 •6	ss: use ic: exp pd: con pd: pro pd: pro ic: inte	e.g. k cc and cho npare co cess cess erpret tri	ps(x + a) sen rule efficien g expre) e ts ession	• ¹ e.g. use $k \cos(x + a)$ • ² $k \cos x \cos a - k \sin x \sin a$ • ³ $k \cos a = 1$ and $k \sin a = 1$ • ⁴ $k = \sqrt{2}$ • ⁵ $\tan a = 1, a = \frac{\pi}{4}$ (45° <i>is bad form</i>) • ⁶ max. value = $\sqrt{2}$ when $x = \frac{7\pi}{4}$ (do not accept 45°)

[END OF QUESTIONS]

