Vectors – Basics

1.
$$\mathbf{p} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 and $\mathbf{q} = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$

- (a) Sketch the vectors **p** and **q**.
- (b) Sketch the vectors $-\mathbf{p}$ and $-\mathbf{q}$.
- (c) Given $\mathbf{u} = \mathbf{p} + \mathbf{q}$, sketch the vector \mathbf{u} .
- (d) Given $\mathbf{v} = \mathbf{p} \mathbf{q}$, sketch the vector \mathbf{v} .

2.
$$\mathbf{a} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} -7 \\ -4 \end{pmatrix}$

- (a) Sketch the vectors **a** and **b**.
- (b) Given $\mathbf{u} = \mathbf{a} + \mathbf{b}$, sketch the vector \mathbf{u} .
- (c) Given $\mathbf{v} = \mathbf{a} \mathbf{b}$, sketch the vector \mathbf{v} .

3.
$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 6 \\ -8 \\ 0 \end{pmatrix}$.

- Find
- (a) 3a (b) -b (c) 2a + 3b (d) 4b a (e) $-\frac{1}{2}b$

- (f) $|\mathbf{b}|$ (g) $|2\mathbf{a}|$ (h) $|\mathbf{b}+2\mathbf{a}|$
- 4. Find **p** and **q** in each equation below

(a)
$$\binom{\mathbf{p}}{\mathbf{q}} + \binom{2}{-1} = \binom{6}{4}$$

(b)
$$\begin{pmatrix} \mathbf{p} \\ \mathbf{q} \end{pmatrix} - \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$$

(a)
$$\begin{pmatrix} \mathbf{p} \\ \mathbf{q} \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$
 (b) $\begin{pmatrix} \mathbf{p} \\ \mathbf{q} \end{pmatrix} - \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$ (c) $\begin{pmatrix} -3 \\ 1 \end{pmatrix} - \begin{pmatrix} \mathbf{p} \\ \mathbf{q} \end{pmatrix} = 3\begin{pmatrix} -2 \\ -1 \end{pmatrix}$

5. Find **p**, **q** and **r** in each of the following

(a)
$$\begin{pmatrix} \mathbf{p} \\ \mathbf{q} \\ \mathbf{r} \end{pmatrix} + \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 1 \end{pmatrix}$$

(a)
$$\begin{pmatrix} \mathbf{p} \\ \mathbf{q} \\ \mathbf{r} \end{pmatrix} + \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} \mathbf{p} \\ \mathbf{q} \\ \mathbf{r} \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -4 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$

- 6. A is the point (2,1,-2) and B is the point (0,-3,4).
 - (a) Write down the components of a and b, the position vectors of A and B.
 - (b) Calculate (i) -2a + b
- (ii) $-2\mathbf{a} + \mathbf{b}$
- (c) Find the vector AB
- 7. P is the point (1,-1,2), Q is (2,0,-5) and R is (1,1,0).
 - (a) Write down the components of \mathbf{p} , \mathbf{q} and \mathbf{r} the position vectors of \mathbf{P} , \mathbf{Q} and \mathbf{R} .
 - (b) Find the vectors (i) \overrightarrow{QP}
- (ii) OR
- (iii) PR

- 8. M is the point (2,3,-5), N is (1,1,0) and R is (-4,2,-2).
 - (a) Write down the components of **m**, **n** and **r** the position vectors of M, N and R.
 - (b) Find the vectors (i) \overrightarrow{MN}
- (ii) RN
- (iii) MR
- 9. PQRS is a parallelogram with vertices P(3,4,0), Q(7,6,-3) and R(8,5,2). Find the coordinates of S. (Hint: $\overrightarrow{PQ} = \overrightarrow{SR}$).
- 10. A is the point (2,1,-6), B is (3,1,-9) and C is (0,1,6). Given $\overrightarrow{AD} = \frac{2}{3} \overrightarrow{BC}$, find the coordinates of D.
- 11. P is the point (-4,2,2), Q is (-1,8,14) and R is (-5,2,10). Given $\overrightarrow{PQ} = \frac{3}{4} \overrightarrow{RS}$, find the coordinates of S.
- 12. (a) Calculate the magnitude of the vector $\mathbf{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.
 - (b) Find a unit vector parallel to the vector **u**.
- 13. (a) Calculate the magnitude of the vector $\mathbf{w} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 - (b) Find a unit vector parallel to w.
- 14. (a) Calculate $|\mathbf{a}|$ where $\mathbf{a} = \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$
 - (b) Find a unit vector parallel to a.
- 15. The diagram shows a regular hexagon.
 - (i) Write down another vector equal to
 - (a) AB
- (b) CD
- (ii) Find a vector equal to

(a)
$$\overrightarrow{AB} + \overrightarrow{BC}$$

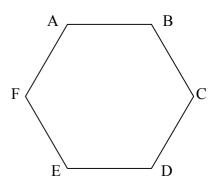
(b)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$

(c)
$$\overrightarrow{FE} + \overrightarrow{ED}$$

(d)
$$\overrightarrow{FA} + \overrightarrow{ED}$$

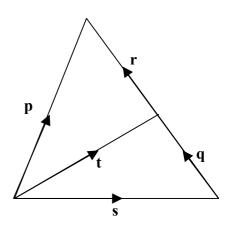
(d)
$$\overrightarrow{FA} + \overrightarrow{ED}$$
 (e) $\overrightarrow{ED} + \overrightarrow{DC} + \overrightarrow{EF}$

(f)
$$\overrightarrow{BC} - \overrightarrow{DC}$$

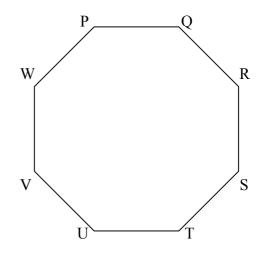


- 16. Use the diagram opposite to name the vector that represents
 - (a) $\mathbf{p} \mathbf{r}$
- (b) $\mathbf{r} \mathbf{p}$
- (c) $\mathbf{t} \mathbf{q}$
- (d) $\mathbf{s} \mathbf{t}$

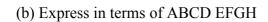
- (e) $\mathbf{p} \mathbf{r} \mathbf{q}$
- (f) $\mathbf{t} + \mathbf{r} \mathbf{p}$
- (g) s p + q



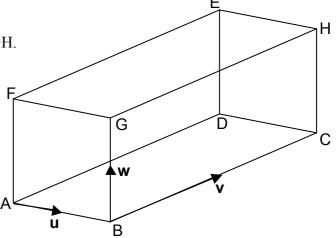
- 17. The diagram shows a regular octagon.
 - (a) Write down another vector equal to
 - (i) \overrightarrow{WP}
- (ii) $\overrightarrow{WV} + \overrightarrow{VU}$
- (iii) $\overrightarrow{WP} + \overrightarrow{SR} + \overrightarrow{RQ}$ (iv) $\overrightarrow{SR} \overrightarrow{ST}$



- 18. The diagram shows a cuboid ABCD EFGH.
 - (a) Express in terms of **u**, **v** and **w**.
 - (i) \overrightarrow{DC}
- (ii) $\overrightarrow{\mathrm{ED}}$
- (iii) \overrightarrow{FH}
- (iv) \overrightarrow{HA}



- (i) $\mathbf{u} + \mathbf{v}$ (ii) $\mathbf{u} \mathbf{w}$
 - (iii) $\mathbf{w} \mathbf{u} + \mathbf{v}$



19. In the trapezium AB = 2DC and AB is parallel to DC.

In terms of **u** and **v**, write down the vectors

- (a) \overrightarrow{AB}
- (b) \overrightarrow{AC} (c) \overrightarrow{BC}
- (d) \overrightarrow{AN}

