Trigonometric Equations

Most trigonometric equations can be divided into one of three types:
TYPE 1: Equations involving a trigonometric function squared but no other trigonometric function.

Examples $4 \sin ^{2} x+5=6,3 \tan ^{2} x-9=0$
TYPE 2: Equations involving $2 \mathrm{x}, 3 \mathrm{x}$, etc. but no other trigonometric function.
Examples $3 \sin 2 \mathrm{x}-1=1, \sqrt{3} \tan (3 \mathrm{x}-30)+2=1$
TYPE 3: Equations involving $2 x$ and another trigonometric function i.e. equations involving the double angle formulae.

Examples $4 \sin 2 \mathrm{x}-2 \cos \mathrm{x}=0, \quad \cos 2 \mathrm{x}-1=3 \cos \mathrm{x}$

TYPE 1:

Example 1 Solve $4 \sin ^{2} x+5=6 \quad 0 \leq x \leq 360$
Solution: $\quad 4 \sin ^{2} x+5=6$

$$
4 \sin ^{2} x=1
$$

$$
\sin ^{2} x=\frac{1}{4}
$$

$$
\sin x=\frac{1}{2},-\frac{1}{2}
$$

$$
\mathrm{x}=30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}
$$

Example 2 Solve $3 \tan ^{2} x-9=0 \quad 0 \leq x \leq 360$
Solution: $\quad 3 \tan ^{2} x-9=0$

$$
3 \tan ^{2} x=9
$$

$$
\tan ^{2} x=3
$$

$$
\tan x=\sqrt{3},-\sqrt{3}
$$

$$
\mathrm{x}=60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}
$$

Example 1 Solve $3 \sin 2 x-1=1 \quad 0 \leq x \leq 360$
(Since question involves 2 x change range to $0 \leq \mathrm{x} \leq 720$)
Solution: $\quad 3 \sin 2 \mathrm{x}-1=1$

$$
3 \sin 2 x=2
$$

$$
\sin 2 x=\frac{2}{3}
$$

$$
\begin{aligned}
2 \mathrm{x} & =41.8^{0}, 138.2^{0}, 360^{0}+41.8^{0}, 360^{0}+138.2^{0} \\
\mathrm{x} & =20.9^{0}, 69.1^{0}, 200.9^{0}, 249.1^{0}
\end{aligned}
$$

Example 2 Solve $\sqrt{3} \tan (3 x-30)+2=1 \quad 0 \leq x \leq 180$
(Since question involves 3 x change range to $0 \leq \mathrm{x} \leq 540$)

Solution: $\quad \sqrt{3} \tan (3 x-30)+2=1$

$$
\begin{aligned}
\sqrt{3} \tan (3 \mathrm{x}-30) & =-1 \\
\tan (3 \mathrm{x}-30) & =-\frac{1}{\sqrt{3}} \\
3 \mathrm{x}-30 & =150^{\circ}, 330^{\circ}, 360^{\circ}+150^{\circ}, 360^{\circ}+330^{\circ} \\
3 \mathrm{x}-30 & =150^{\circ}, 330^{\circ}, 510^{\circ}, 690^{\circ} \text { (too big) } \\
3 \mathrm{x} & =180^{\circ}, 360^{\circ}, 540^{\circ} \\
\mathrm{x} & =60^{\circ}, 120^{\circ}, 180^{\circ}
\end{aligned}
$$

TYPE 3:

Example 1 Solve $4 \sin 2 x-2 \cos x=0 \quad 0 \leq x \leq 360$
Solution: (Use the formula $\sin 2 \mathrm{x}=2 \sin \mathrm{x} \cos \mathrm{x}$)

$$
\begin{aligned}
4 \sin 2 x-2 \cos x & =0 \\
4(2 \sin x \cos x)-2 \cos x & =0 \\
8 \sin x \cos x-2 \cos x & =0 \\
2 \cos x(4 \sin x-1) & =0
\end{aligned}
$$

$$
\begin{array}{cccc|c}
2 \cos x=0 & \text { or } & 4 \sin x-1=0 & \square \sin & \text { all } \square \\
\cos x=0 & 4 \sin x=1 & & \\
x=\frac{1}{4} & & \\
\text { using graph: } x=90^{\circ}, 270^{\circ} & x=14.5^{\circ}, 165.5^{\circ} & \tan & \cos
\end{array}
$$

Example 2 Solve $\cos 2 x-1=3 \cos x \quad 0 \leq x \leq 360$
Solution: (Use the formula $\cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1$)

$$
\begin{aligned}
& \cos 2 \mathrm{x}-1=3 \cos \mathrm{x} \\
& 2 \cos ^{2} \mathrm{x}-1-1=3 \cos \mathrm{x} \\
& 2 \cos ^{2} x-3 \cos x-2=0 \\
& (2 \cos x+1)(\cos x-2)=0 \\
& 2 \cos \mathrm{x}+1=0 \\
& 2 \cos x=-1 \\
& \text { or } \\
& \cos x-2=0 \\
& \cos x=-\frac{1}{2} \\
& \cos \mathrm{x}=2 \\
& \text { no solutions } \\
& \mathrm{x}=120^{0}, 240^{0}
\end{aligned}
$$

$\square \sin$	all
$\square \tan$	\cos

NOTE: If equation involves $\cos 2 x$ and $\cos x$ use the formula $\cos 2 x=2 \cos ^{2} x-1$ If equation involves $\cos 2 x$ and $\sin x$ use the formula $\cos 2 x=1-2 \sin ^{2} x$

Questions

1. Solve the following equations
(a) $3 \tan ^{2} \mathrm{x}-1=0$ $0 \leq x \leq 360$
(b) $2 \cos 2 x+3=2$ $0 \leq \mathrm{x} \leq 360$
(c) $4 \sin \mathrm{x}-3 \sin 2 \mathrm{x}=0$ $0 \leq x \leq 360$
(d) $2 \cos 2 x=1-\cos x$ $0 \leq x \leq 360$
(e) $4 \cos ^{2} \mathrm{x}-1=2$
$0 \leq x \leq 2 \pi$
(f) $5 \tan (2 \mathrm{x}-40)+1=6$
$0 \leq x \leq 360$
(g) $2 \sin 2 x+\sqrt{3}=0$
$0 \leq x \leq 2 \pi$
(h) $3 \sin 2 \mathrm{x}-3 \cos \mathrm{x}=0 \quad 0 \leq \mathrm{x} \leq 360$
(i) $\cos 2 x+5=4 \sin x \quad 0 \leq x \leq 360$
(j) $4 \tan 3 x+5=1 \quad 0 \leq x \leq \pi$
(k) $2 \cos (2 x+80)=1$
$0 \leq x \leq 180$
(l) $6 \sin ^{2} x+5=8$
$0 \leq x \leq 2 \pi$
(m) $5 \sin 2 \mathrm{x}-6 \sin \mathrm{x}=0$
$0 \leq \mathrm{x} \leq 360$
(n) $3 \cos 2 x+\cos x=-1$
$0 \leq x \leq 360$
2. (a) Show that $2 \cos 2 x-\cos ^{2} x=1-3 \sin ^{2} x$
(b) Hence solve the equation $2 \cos 2 x-\cos ^{2} x=2 \sin x \quad 0 \leq x \leq 90$
3.(a) The diagram shows the graph of $y=a \sin b x$.
Write down the values of a and b.
(b) Find the coordinates of P and Q the points of intersection of this graph and the line $\mathrm{y}=2$.
3. (a) The diagram shows the graph of $y=a \cos b x+c$.
Write down the values of a, b and c .
(b) Find the coordinates of the points of intersection of this graph and the line $y=-3,0 \leq x \leq 360$

4. (a) The diagram shows the graph of $y=a \cos b x+c$.
Write down the values of a, b and c .
(b) For the interval $0 \leq x \leq 360$, find the points of intersection of this graph and the line $\mathrm{y}=1.5$

5. The diagram shows the graphs of $\mathrm{g}(\mathrm{x})=\mathrm{acos} \mathrm{bx}+\mathrm{c}$ and $\mathrm{h}(\mathrm{x})=\cos \mathrm{x}$
(a) State the values of a, b and c.
(b) Find the coordinates of P and Q .
6. The diagram shows the graphs of $\mathrm{g}(\mathrm{x})=\operatorname{asin} \mathrm{bx}+\mathrm{c}$ and $\mathrm{h}(\mathrm{x})=\mathrm{d} \sin \mathrm{x}+\mathrm{e}$
(a) Write down the values of a, b and c .
(b) Write down the values of d and e .
(c) Find the points of intersection of these curves for $0 \leq x \leq 360$

7. The diagram shows the graphs of $h(x)=\operatorname{asin} x$ and $g(x)=b \cos c x$.
(a) Write down the values of a, b and c .
(b) Find the coordinates of P and Q .

Addition / Double Angle Formulae
 Applications

1. Using the triangle shown opposite, show that the exact value of $\cos 2 \mathrm{x}$ is $\frac{7}{25}$

2. Using triangle $P Q R$, find the exact value of $\sin 2 x$.

3. Given $\sin x=\frac{2}{\sqrt{5}}$, find the exact value of
(a) $\sin 2 x$
(b) $\cos 2 x$
(c) $\tan 2 x$
4. Given $\sin x=\frac{1}{3}$
(a) Show that
(i) $\cos 2 x=\frac{7}{9}$
(ii) $\sin 2 x=\frac{4 \sqrt{2}}{9}$
(b) By writing $\sin 4 x$ as $\sin 2(2 x)$, find the exact value of $\sin 4 x$
5. Using the triangles opposite show that
$\sin (a-b)=\frac{2 \sqrt{2}-2}{3 \sqrt{5}}$

6. Using the diagram shown show that

$$
\sin (a+b)=\frac{1}{\sqrt{2}}
$$

7. The diagram shows triangle ABC .

Find the exact value of
(a) $\sin \mathrm{ACB}$
(b) $\cos \mathrm{ACB}$
(c) $\tan \mathrm{ACB}$

8. In the diagram angle $\mathrm{DEC}=$ angle $\mathrm{CEB}=\mathrm{x}^{0}$ $\mathrm{CD}=1$ unit and $\mathrm{DE}=\sqrt{2}$ units.

Find the exact value of cos DEA.

9. Functions $f(x)=\sin x, g(x)=x+\frac{\pi}{6}$ and $h(x)=x-\frac{\pi}{6}$
(a) Show that $f(g(x))=\frac{\sqrt{3}}{2} \sin x+\frac{1}{2} \cos x$
(b) Find a similar expression for $\mathrm{f}(\mathrm{h}(\mathrm{x}))$.
(c) Hence solve the equation $\mathrm{f}(\mathrm{g}(\mathrm{x}))+\mathrm{f}(\mathrm{h}(\mathrm{x}))=\frac{3}{2}$ for $0 \leq \mathrm{x} \leq 2 \pi$

