The Discriminant

- 1. Show that x = 2 is the only real solution to the equation $x^3 x^2 + x 6 = 0$.
- 2. Show that x = -4 is the only real solution to the equation $x^3 + 2x^2 3x + 20 = 0$.
- 3. (a) Show that the line y = 2x 2 and the curve $y = 2x^3 + 5x^2 + 12x + 5$ intersect at the point (-1,-4).
 - (b) Show that there are no other points of intersection between the line and the curve.
- 4. (a) Show that the line y = 3x 2 and the curve $y = x^3 + 5x + 10$ intersect at the point (-2,-8).
 - (b) Prove that there are no other points of intersection between the curve and the line.
- 5. Show that the curve with equation $f(x) = x^3 + x^2 + 5x 4$ has no stationary points.
- 6. (a) Show that the curve $y = \frac{1}{4}x^4 + 2x^2 16x + 5$ has a stationary point when x = 2.
 - (b) Prove that the curve has no other stationary points.
- 7. (a) $f(x) = x^4 + 8x^3 + 24x^2 + 28x + 3$. Show that f(x) has a stationary point when x = -1.

(b) Show that the curve has no other stationary points.

- 8. The equation $2x^2 + 4px + p^2 2p 1 = 0$ has equal roots. Find the value of p.
- 9. (a) Prove that the roots of $mx^2 (2m + 4)x + 8 = 0$ are always real.
 - (b) If the roots of $mx^2 (2m + 4)x + 8 = 0$ are in fact equal, write down the value of m.