Polynomials

1. (a) Show that $(x-4)$ is a factor of $x^{3}-4 x^{2}-x+4$.
(b) Hence factorise $\mathrm{x}^{3}-4 \mathrm{x}^{2}-\mathrm{x}+4$ fully.
. (a) Show that $(x+1)$ is a factor of $x^{3}-7 x-6$.
(b) Hence factorise $x^{3}-7 x-6$ fully.
2. (a) $f(x)=x^{3}+3 x^{2}-9 x+5$. Factorise $f(x)$ fully.
(b) Hence solve $f(x)=0$.
3. $f(x)=4 x^{3}-8 x^{2}-x+2$. Given $(x-2)$ is a factor of $f(x)$, solve $f(x)=0$.
4. (a) $f(x)=2 x^{3}+x^{2}-5 x+2$. Show that $(2 x-1)$ is a factor of $f(x)$.
(b) Factorise $f(x)$ completely.
5. (a) $g(x)=3 x^{3}+4 x^{2}-5 x-2$. Show that $(3 x+1)$ is a factor of $g(x)$.
(b) Hence solve $g(x)=0$.
. (a) Show that $x=1$ is a solution of the equation $x^{3}+x^{2}-10 x+8=0$.
(b) Hence solve the equation $x^{3}+x^{2}-10 x+8=0$ completely.
6. Show that $x=2$ is a solution to the equation $6 x^{3}-5 x^{2}-17 x+6=0$ and hence solve the equation completely.
7. (a) Given that $(x+3)$ is a factor of $x^{3}+3 x^{2}-x+p$, find the value of p.
(b) Hence solve the equation $x^{3}+3 x^{2}-x+p=0$ when p takes this value.
8. (a) Given $(x+1)$ is a factor of $2 x^{3}-x^{2}+k x-9$, find the value of k.
(b) Hence factorise fully $2 x^{3}-x^{2}+k x-9$ when k takes this value.
9. (a) $f(x)=x^{3}-p x^{2}-10 x+8 p$. Given $(x-2)$ is a factor of $f(x)$, find p.
(b) Hence solve $f(x)=0$ when p takes this value.
10. $(x-3)$ and $(x+3)$ are both factors of $2 x^{3}-x^{2}+p x+q$. Find p and q.
11. $x=1$ and $x=-2$ are both solutions to the equation $4 x^{3}+x^{2}+a x+b=0$. Find the values of a and b.
12. (a) $f(x)=4 x^{3}+13 x^{2}+c x+$ d. Given $(x-1)$ and $(x+5)$ are both factors of $f(x)$, find c and d .
(b) Hence solve $f(x)=0$ when c and d take these values.
13. (a) Show that $(x-1)$ is a factor of $x^{3}+5 x^{2}+4 x-10$.
(b) Hence, or otherwise, show that $\mathrm{x}=1$ is the only real solution to the equation $x^{3}+5 x^{2}+4 x-10=0$.
14. Show that $\mathrm{x}=4$ is the only real solution to the equation $3 \mathrm{x}^{3}-11 \mathrm{x}^{2}-16=0$
15. A curve has equation $\mathrm{y}=2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-6 \mathrm{x}-4$.
(a) Show that the line $y=3 x+6$ intersects this curve at the point $(2,12)$.
(b) Find the other points of intersection of the curve and the line $\mathrm{y}=3 \mathrm{x}+6$.

16. A cubic has equation $y=x^{3}-3 x^{2}-7 x+18$ and a parabola has equation $\mathrm{y}=\mathrm{x}^{2}+4 \mathrm{x}-12$.
(a) Show that the cubic and the parabola intersect at the point $(2,0)$
(b) Find the other points of intersection of the cubic and the parabola.

17. A curve has equation $\mathrm{y}=3 \mathrm{x}^{3}+6 \mathrm{x}^{2}+9 \mathrm{x}+2$.
(a) Show that the line $y=2 x-2$ intersects the curve at the point $(-1,-4)$.
(b) Show that there are no other points of intersection between the curve and the line $\mathrm{y}=2 \mathrm{x}-2$.
18. (a) Show that $f(x)=\frac{1}{2} x^{4}+2 x^{2}+24 x-1$ has a stationary point when $x=-2$.
(b) Prove that $\mathrm{f}(\mathrm{x})$ has no other stationary points.
19. (a) $y=\frac{3}{2} x^{4}+4 x^{3}+6 x^{2}-30 x+3$. Show that $\left(1,-\frac{31}{2}\right)$ is a turning point on this curve.
(b) Show that this curve has no other stationary points.
20. (a) Show that $\mathrm{x}=-1$ is a solution to the equation $\mathrm{x}^{3}+\mathrm{px}^{2}+\mathrm{px}+1=0$.
(b) Hence find the range of values of p for which all the roots of this equation are real.
21. (a) Show that $x=2$ is a solution to the equation $2 x^{3}+\mathrm{kx}^{2}-2 \mathrm{kx}-16=0$.
(b) Hence find the range of values of k for which all the roots of this equation are real.
