1. The lines $y=4 x-11$ and $3 y=2 x-13$ intersect at the point P. Find the coordinates of P .
2. The lines $2 \mathrm{x}+3 \mathrm{y}-14=0$ and $3 \mathrm{x}-\mathrm{y}-10=0$ intersect at the point A. Find the coordinates of A.
3. The diagram shows the parabola $y=x^{2}-2 x-7$ and the line $\mathrm{y}=2 \mathrm{x}-2$.
The line and the parabola intersect at the points M N.

Find the coordinates of M and N .

4. The diagram shows the parabolas

$$
y=4-x^{2} \text { and } y=2 x^{2}-2 x+3
$$

Find the coordinates of P and Q .

5. (a) The diagram shows a parabola $f(x)$.

Find a formula for $f(x)$.
(b) The line with equation $y=3 x-6$ is also drawn on the graph.

Find the coordinates of A.

6. The diagram shows the graph of $y=x^{3}-x^{2}-6 x-5$ and a tangent to this curve at the point $\mathrm{A}(1,-11)$.
(a) Find the equation of this tangent.
(b) Find the coordinates of B, the point where the tangent meets the curve again.

7. The line $y=4 x+10$ and the curve $y=x^{3}+6 x^{2}+3 x-20$ intersect at 3 points. One of these points is $(-3,-2)$. Find the coordinates of the other points.
8. The tangent to the curve $\mathrm{y}=\mathrm{x}^{3}-7 \mathrm{x}+6$ at the point $(-1,12)$ has equation $\mathrm{y}+4 \mathrm{x}=8$. Find the coordinates of the other point of intersection of the curve and this tangent.
9. (a) The diagram shows the graph of $y=f(x)$.
$\mathrm{f}(\mathrm{x})$ has a maximum turning at $\mathrm{P}(1,4)$
Find a formula for $f(x)$.
(b) The curve $f(x)$ and the line $y=6 x-10$ intersect at 3 points. One of these points is $(-1,-16)$.

Find the coordinates of K and L the other points of intersection.

10. (a) The diagram opposite shows the graph of $y=f(x)$.

Find a formula for $f(x)$.
(b) Find the coordinates of the point P, the other point of intersection of $f(x)$ and the parabola $y=x^{2}+4 x+7$.

11. A curve has equation $y=x^{3}-3 x^{2}+2 x$.
(a) Find the equation of the tangent to this curve at the point where $\mathrm{x}=2$.
(b) Find the coordinates of D , the point where this tangent meets the curve again.
12. The line $y=2 x$ intersects the circle $x^{2}+y^{2}+8 x-4 y-20=0$ at 2 points.

Find the coordinates of these points.
13. The line $y=2 x-5$ intersects the circle with equation

$$
x^{2}+y^{2}-4 x+6 y+12=0
$$

at 2 points, A and B.
Find the coordinates of A and B.

14. (a) Find the equation of the tangent to the curve $y=x^{3}+2 x^{2}-3 x+2$ at the point where $\mathrm{x}=1$.
(b) This line is also a tangent to the circle $x^{2}+y^{2}-12 x-10 y+44=0$. Find the point of contact.

