Recurrence Relations - basics

1. A recurrence relation is defined as

$$
u_{n+1}=2 u_{n}+10, u_{0}=20
$$

(a) Find the values of u_{1} and u_{2}.
(b) Find the smallest value of n such that $\mathrm{u}_{\mathrm{n}}>500$.
2. A recurrence relation is defined as

$$
\mathrm{u}_{\mathrm{n}+1}=0.5 \mathrm{u}_{\mathrm{n}}+6, \mathrm{u}_{0}=8
$$

Find the values of u_{1}, u_{2} and u_{3}
3. A recurrence relation is defined as

$$
u_{n}=3 u_{n-1}+1.5, u_{1}=30
$$

(a) Find the values of u_{2} and u_{3}
(b) Find the smallest value of n such that $\mathrm{u}_{\mathrm{n}}>1000$.
4. A recurrence relation is defined as

$$
\mathrm{u}_{\mathrm{n}}=0.25 \mathrm{u}_{\mathrm{n}-1}-4, \mathrm{u}_{1}=10
$$

(a) Find the values of u_{2} and u_{3}
(b) Find the smallest value of n such that $\mathrm{u}_{\mathrm{n}}<-5.3$.
5. A recurrence relation is defined as

$$
\mathrm{u}_{\mathrm{n}}=4 \mathrm{u}_{\mathrm{n}-1}+8, \mathrm{u}_{1}=88
$$

Find the values of u_{0} and u_{2}
6. A recurrence relation is defined as

$$
u_{n+1}=0.4 u_{n}+2, u_{2}=6
$$

(a) Find the values of u_{3} and u_{4}
(b) Find the values of u_{1} and u_{0}
7. A recurrence relation is defined as

$$
u_{n+1}=2 u_{n}+40, u_{6}=240
$$

(a) Find the value of u_{7}
(b) Find the values of u_{5} and u_{4}
8. A recurrence relation is defined as

$$
u_{n+2}=5 u_{n+1}+2, u_{3}=212
$$

(a) Find the values of u_{4} and u_{5}
(b) Find the values of u_{2} and u_{1}
(c) Find the smallest value of n such that $u_{n}>30000$.
9. A recurrence relation is defined as

$$
u_{n+1}=2 u_{n}+5, u_{1}=55
$$

(a) Find the values of u_{2} and u_{3}
(b) How many terms of this sequence lie between 1000 and 10000 .
10. A recurrence relation is defined by

$$
u_{n+1}=p u_{n}+2, u_{0}=p
$$

(a) Find an expression for u_{1}
(b) Given $u_{1}=6$, find two values for p.
11. A recurrence relation is defined by

$$
u_{n+1}=k u_{n}-4, u_{0}=2
$$

(a) Find expressions for u_{1} and u_{2} in terms of k.
(b) Given $\mathrm{u}_{2}=2$, find the value of k if $\mathrm{k}>0$.
12. A recurrence relation is defined by

$$
u_{n}=m u_{n-1}+1, u_{1}=3
$$

(a) Find expressions for u_{2} and u_{3} in terms of m.
(b)If $u_{3}=3$, find m .

