Recurrence Relations - Limits

1. Given the recurrence relation $u_{n+1}=0.4 u_{n}+12, u_{o}=22$
(a) State why the sequence generated by it has a limit.
(b) Calculate the value of this limit.
2. A sequence is defined by the recurrence relation $u_{n+1}=0.8 u_{n}+4$.
(a) Explain why this sequence has a limit as n tends to infinity.
(b) Find the exact value of this limit.
3. Two sequences are defined by these recurrence relations

$$
u_{n+1}=2 u_{n}-0.2 \text { with } u_{o}=6 \quad v_{n+1}=0.25 v_{n}+6 \text { with } v_{o}=10
$$

(a) Explain why only one of these sequences approaches a limit as $\mathrm{n} \rightarrow \infty$
(b) Find algebraically the exact value of this limit.
4. A sequence is defined by the recurrence relation $u_{n}=0.7 u_{n-1}+6, u_{1}=2$
(a) Calculate the value of u_{2} and u_{3}
(b) What is the smallest value of n for which $u_{n}>15$
(c) Find the limit of this sequence as $\mathrm{n} \rightarrow \infty$
5. A sequence is defined by the recurrence relation $\mathrm{V}_{\mathrm{n}}=0.6 \mathrm{~V}_{\mathrm{n}-1}+10, \mathrm{~V}_{1}=20$
(a) Calculate the value of V_{2}
(b) What is the smallest value of n for which $\mathrm{V}_{\mathrm{n}}>24$
(c) Find the limit of this sequence as $\mathrm{n} \rightarrow \infty$
6. A recurrence relation is defined as

$$
\mathrm{u}_{\mathrm{n}}=0.25 \mathrm{u}_{\mathrm{n}-1}-8, \mathrm{u}_{1}=10
$$

(a) Find the values of u_{2} and u_{3}
(b) Explain why this sequence has a limit as n tends to infinity and calculate the value of this limit.
7. A recurrence relation is defined as

$$
u_{n+1}=0.8 u_{n}+4, u_{2}=32.8
$$

(a) Find the values of u_{1} and u_{0}
(b) Explain why this sequence has a limit as n tends to infinity and calculate the value of this limit.
8. Two sequences are defined by the recurrence relations

$$
\mathrm{u}_{\mathrm{n}+1}=0.4 \mathrm{u}_{\mathrm{n}}+\mathrm{p} \quad \mathrm{v}_{\mathrm{n}+1}=0.8 \mathrm{v}_{\mathrm{n}}+\mathrm{q}
$$

If both sequences have the same limit, express p in terms of q.

