Recurrence Relations - Limits

- 1. Given the recurrence relation $u_{n+1} = 0.4u_n + 12$, $u_0 = 22$
 - (a) State why the sequence generated by it has a limit.
 - (b) Calculate the value of this limit.
- 2. A sequence is defined by the recurrence relation $u_{n+1} = 0.8u_n + 4$.
 - (a) Explain why this sequence has a limit as n tends to infinity.
 - (b) Find the exact value of this limit.
- 3. Two sequences are defined by these recurrence relations

 $u_{n+1} = 2u_n - 0.2$ with $u_o = 6$ $v_{n+1} = 0.25v_n + 6$ with $v_o = 10$

- (a) Explain why only one of these sequences approaches a limit as $n \rightarrow \infty$ (b) Find algebraically the exact value of this limit.
- 4. A sequence is defined by the recurrence relation $u_n = 0.7u_{n-1} + 6$, $u_1 = 2$
 - (a) Calculate the value of u_2 and u_3
 - (b) What is the smallest value of n for which $u_n > 15$
 - (c) Find the limit of this sequence as $n \to \infty$
- 5. A sequence is defined by the recurrence relation $V_n = 0.6V_{n-1} + 10$, $V_1 = 20$
 - (a) Calculate the value of V_2
 - (b) What is the smallest value of n for which $V_n > 24$
 - (c) Find the limit of this sequence as $n \to \infty$

6. A recurrence relation is defined as

$$u_n = 0.25u_{n-1} - 8, u_1 = 10$$

- (a) Find the values of u_2 and u_3
- (b) Explain why this sequence has a limit as n tends to infinity and calculate the value of this limit.
- 7. A recurrence relation is defined as

$$u_{n+1} = 0.8u_n + 4, u_2 = 32.8$$

- (a) Find the values of u_1 and u_0
- (b) Explain why this sequence has a limit as n tends to infinity and calculate the value of this limit.
- 8. Two sequences are defined by the recurrence relations

$$u_{n+1} = 0.4u_n + p$$
 $v_{n+1} = 0.8v_n + q$

If both sequences have the same limit, express p in terms of q.