Functions 1

1. $f(x)=2 x^{2}$ and $g(x)=5 x-4$.
(a) Find $f(g(2))$.
(b) Find a formula for $\mathrm{f}(\mathrm{g}(\mathrm{x}))$.
2. $\mathrm{f}(\mathrm{x})=\frac{2}{3 \mathrm{x}}-1$ and $\mathrm{g}(\mathrm{x})=\frac{2}{3 \mathrm{x}+3} \quad \mathrm{x} \neq-1,0$
(a) Given $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x})$), find a formula for $\mathrm{h}(\mathrm{x})$.
(b) State the connection between $f(x)$ and $g(x)$.
3. $f(x)=6 x^{2}-4 x$ and $g(x)=\frac{1}{3 x-6}, x \neq 2$
(a) Show that $g(f(x))=\frac{1}{6(3 x+1)(x-1)}$.
(b) State a suitable domain for $\mathrm{g}(\mathrm{f}(\mathrm{x}))$.
4. $f(x)=\frac{2}{1-x}$ and $g(x)=1-\frac{2}{x}, x \neq 0,1$
(a) find $f(g(x))$
(b) State the connection between f and g .
5. $f(x)=(x-1)(x+3)$ and $g(x)=x^{2}+3$.

Show that $f(g(x))-g(g(x))=2 x^{2}$
6. The functions f and g, defined on suitable domains, are given by

$$
\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}^{2}-4} \text { and } \mathrm{g}(\mathrm{x})=\mathrm{x}+1
$$

(a) Find an expression for $h(x)$, where $h(x)=f(g(x))$.

Give your answer as a single fraction.
(b) State a suitable domain for h .
7. On a suitable set of real numbers, functions f and g are defined by

$$
f(x)=\frac{1}{x+3} \text { and } g(x)=\frac{1}{x}-3
$$

Find $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ in its simplest form.
8. A function f is defined on the set of real numbers by $f(x)=\frac{4-x}{x}, x \neq 0$ Find in its simplest form an expression for $\mathrm{f}(\mathrm{f}(\mathrm{x}))$.
9. $f(x)=\frac{4}{x+2}$ and $g(x)=\frac{2}{x}-2, x \neq-2,0$

Find $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ in its simplest form.
10. $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}-5}{\mathrm{x}}$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-\frac{12}{\mathrm{x}}, \mathrm{x} \neq 0$
(a) Show that $f(g(x))=\frac{(3 x+4)(x-3)}{3(x-2)(x+2)}$
(b) State a suitable domain for $\mathrm{f}(\mathrm{g}(\mathrm{x}))$.
11. Two functions are defined as $f(x)=x^{2}+1$ and $g(x)=2-x^{2}$.
(a) Find an expression for $\mathrm{f}(\mathrm{f}(\mathrm{x}))$.
(b) Find a similar expression for $\mathrm{g}(\mathrm{g}(\mathrm{x}))$ and hence show that $\mathrm{f}(\mathrm{f}(\mathrm{x}))+\mathrm{g}(\mathrm{g}(\mathrm{x}))=6 \mathrm{x}^{2}$.
12. $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{k}$, where k is a constant.
(a) Find an expression for (i) $g(f(x))$ (ii) $f(g(x))$.
(b) Show that $g(f(x))-f(g(x))=0$ simplifies to $2 x^{2}+4 x-k=0$.
(c) Find the value of k for which $2 \mathrm{x}^{2}+4 \mathrm{x}-\mathrm{k}=0$ has equal roots.

