Differentiation - 2

1. Differentiate
(a) $y=3 x^{4}-4 x^{2}+2 x$
(b) $f(x)=x^{2}\left(2 x^{3}-x\right)$
(c) $f(x)=3(4 x-1)(x+2)$
(d) $y=\sqrt{x}(x-4)$
(e) $f(x)=\frac{x^{3}+3 x-1}{x^{2}}$
(f) $\frac{3 x^{3}+x}{\sqrt{x}}$
2. $y=x^{2}(x-\sqrt{x})$. Find $f^{\prime}(4)$.
3. Given $f(x)=\frac{2 x}{\sqrt[3]{x}}+x^{3}$, find $f^{\prime}(8)$.
4. Given $\mathrm{y}=3 \mathrm{x}-\frac{1}{\mathrm{x}^{2}}$. Find the rate of change when $\mathrm{x}=2$.
5. The distance a rocket travels is calculated using the formula $d(t)=4 t^{3}$, where t is the time in seconds after lift-off.
Calculate the speed of the rocket after 8 seconds.
6. Find the equation of the tangent to the curve $y=3 x^{3}-4 x+1$ at the point $(1,0)$.
7. Find the equation of the tangent to the curve $y=\frac{4 \sqrt{x}}{x}+2 x$ at the point where $x=4$
8. A curve has equation $y=3 x^{2}-9 x+1$. A tangent to this curve has gradient 3. Find the equation of this tangent.
9. A curve has equation $y=x^{2}+5 x+7$. A tangent to this curve meets the positive direction of the x-axis at 45°. Find the equation of this tangent.
10. A curve has equation $\mathrm{y}=\frac{\mathrm{x}^{4}}{4}-32 \mathrm{x}$. A tangent to this curve is parallel to the x -axis. Find the equation of this tangent.
11. Show that the curve $y=x^{3}-6 x^{2}+12 x-5$ is never decreasing.
12. Show that the curve $y=12 x^{2}-6 x-8 x^{3}$ is never increasing.
13. Show that the curve $y=x^{3}-x^{2}+x$ is always increasing.
14. Find the intervals in which $y=x^{3}-6 x^{2}+5$ is increasing.
15. Find the stationary points of the curve $y=x^{3}-12 x+3$ and determine their nature.
16. A curve has equation $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+4 \mathrm{x}^{2}-3 \mathrm{x}-18$.
(a) Show that $(x+3)$ is a factor of $f(x)$.
(b) Find the points where $f(x)$ cuts the x and y axes.
(c) Find the stationary points of $f(x)$ and determine their nature.
(d) Make a sketch of $f(x)$.
17. A curve has equation $f(x)=8 x^{3}-3 x^{2}$
(a) Find the stationary points of $f(x)$ and determine their nature.
(b) Find the maximum and minimum values of $f(x)$ in the interval $-2 \leq x \leq 1$.
18. A square piece of card of side 20 cm has a square of side x cm cut from each corner.
An open box is formed by turning up the sides.
(a) Show that the volume of the box can be written as $V=400 x-80 x^{2}+4 x^{3}$
(b) Find the maximum volume of the box.

19. For each function $f(x)$ below, sketch $f^{\prime}(x)$.

$\xrightarrow{\mathrm{x}}$
20. $y=x^{3}-x^{2}$. Show that $x \frac{d y}{d x}-2 y=x^{3}$
