Differentiation – 2

- 1. Differentiate (a) $y = 3x^4 - 4x^2 + 2x$ (b) $f(x) = x^2(2x^3 - x)$ (c) f(x) = 3(4x - 1)(x + 2)(d) $y = \sqrt{x}(x - 4)$ (e) $f(x) = \frac{x^3 + 3x - 1}{x^2}$ (f) $\frac{3x^3 + x}{\sqrt{x}}$
- 2. $y = x^2(x \sqrt{x})$. Find f'(4).
- 3. Given $f(x) = \frac{2x}{\sqrt[3]{x}} + x^3$, find f'(8).
- 4. Given $y = 3x \frac{1}{x^2}$. Find the rate of change when x = 2.
- 5. The distance a rocket travels is calculated using the formula $d(t) = 4t^3$, where t is the time in seconds after lift-off. Calculate the speed of the rocket after 8 seconds.
- 6. Find the equation of the tangent to the curve $y = 3x^3 4x + 1$ at the point (1,0).
- 7. Find the equation of the tangent to the curve $y = \frac{4\sqrt{x}}{x} + 2x$ at the point where x = 4
- 8. A curve has equation $y = 3x^2 9x + 1$. A tangent to this curve has gradient 3. Find the equation of this tangent.
- 9. A curve has equation $y = x^2 + 5x + 7$. A tangent to this curve meets the positive direction of the x-axis at 45°. Find the equation of this tangent.
- 10. A curve has equation $y = \frac{x^4}{4} 32x$. A tangent to this curve is parallel to the x-axis. Find the equation of this tangent.
- 11. Show that the curve $y = x^3 6x^2 + 12x 5$ is never decreasing.
- 12. Show that the curve $y = 12x^2 6x 8x^3$ is never increasing.
- 13. Show that the curve $y = x^3 x^2 + x$ is always increasing.
- 14. Find the intervals in which $y = x^3 6x^2 + 5$ is increasing.
- 15. Find the stationary points of the curve $y = x^3 12x + 3$ and determine their nature.

- 16. A curve has equation $f(x) = x^3 + 4x^2 3x 18$.
 - (a) Show that (x + 3) is a factor of f(x).
 - (b) Find the points where f(x) cuts the x and y axes.
 - (c) Find the stationary points of f(x) and determine their nature.
 - (d) Make a sketch of f(x).
- 17. A curve has equation $f(x) = 8x^3 3x^2$
 - (a) Find the stationary points of f(x) and determine their nature.
 - (b) Find the maximum and minimum values of f(x) in the interval $-2 \le x \le 1$.
- 18. A square piece of card of side 20 cm has a square of side x cm cut from each corner.

An open box is formed by turning up the sides.

- (a) Show that the volume of the box can be written as $V = 400x 80x^2 + 4x^3$
- (b) Find the maximum volume of the box.

19. For each function f(x) below, sketch f'(x).

