	How well do I understand?
Straight Line	
Calculate the distance between 2 points using the distance formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	12345678910
Calculate a mid-point ($\left.\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$	12345678910
Calculate a gradient between 2 given points $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	12345678910
Calculate the gradient when given the angle that the line makes with the positive direction of the x -axis $m=\tan \theta$	12345678910
Gradient of a parallel lines $m_{1}=m_{2}$	12345678910
Gradient of perpendicular lines $m_{1} \times m_{2}=-1$	12345678910
Calculate the equation of a line when given the gradient and y-intercept $y=m x+c$	12345678910
Calculate the equation of a line when given the gradient and a point on the line $y-b=m(x-a)$	12345678910
Find the point of intersection between lines	12345678910
Calculating the equation of a median	123445678910
Calculating the equation of an altitude	12345678910
Calculating the equation of a perpendicular bisector	12345678910
State if points are collinear	12345678910

CfE Higher Mathematics

	How well do I understand?
Functions and Graphs	
Understand function terminology and notation	12345678910
Find a composite function e.g. $\mathrm{f}(\mathrm{g}(\mathrm{x})$)	12345678910
Find the equation of an inverse function, $\mathrm{f}^{-1}(\mathrm{x})$	12345678910
Sketch / assess functions and their transformations e.g. $f(x)+a, f(x+a), f(-x),-f(x), k f(x), f(k x)$	12345678910
Sketch / assess logarithmic and exponential functions	12345678910
Sketch / assess trigonometric functions in degrees and radians	12345678910
	How well do I understand?
Recurrence Relations	
Construct a recurrence relation when given relevant information	12345678910
Calculate a and b when given three consecutive terms in a sequence	12345678910
Find the limit, where it exists, for a recurrence relation	12345678910

Rothesay Academy

CfE Higher Mathematics

Mathematics Department

Block 1

	How well do I understand?
Differentiation	
Differentiate a function of the form $f(x)=a x^{n}$	12345678910
Know how to prepare to differentiate e.g. functions with negative and fractional powers	12345678910
Calculate the gradient of a tangent to a function	12345678910
Calculate the equation of a tangent to a function	123345678910
Find an expression for velocity ($v=\frac{d x}{d t}$) when given the displacement, x	12345678910
Find an expression for acceleration ($s=\frac{d v}{d t}$) when given the velocity, v	12345678910
Sketch the graph of a derived function	122345678910
Find stationary points and their nature	123454678910
Identify when a function is increasing/decreasing	123345678910
Use the stationary points and points to intersection of the axes to sketch the graph of a curve	123445678910
Find the maximum/minimum values in a closed interval	12345678910
Solve optimization problems	12345678910

Rothesay Academy

CfE Higher Mathematics

	How well do I understand?
Quadratics and Polynomials	
Complete the square for a quadratic expression	123345678910
State the max/min value of a function completed square form	12345678910
Sketch the graph of a quadratic function	12345678910
Solve a quadratic equation through factorising or quadratic formula	123445678910
Use the discriminant to determine the nature of the roots	123445678910
Use the discriminant to prove tangency	12 1 3 4 6 8
Solve quadratic inequalities	12345678910
Use synthetic division to factorise a polynomial	$12 \begin{array}{lllllllll} \\ 1 & 3 & 4 & 6 & 7 & 9\end{array}$
Use the remainder and factor theorems	$12 \begin{array}{llllllllll}10\end{array}$
Find the roots of polynomials	$12 \begin{array}{llllllllll}10\end{array}$
State the equation of a polynomial given the graph of the function	12345678910
Use iteration to find approximate roots of polynomials	123445678910

Rothesay Academy

CfE Higher Mathematics

Integration

Rothesay Academy

CfE Higher Mathematics

	How well do I understand?
Circle	
Find the equation of a circle with centre O and radius $r x^{2}+y^{2}=r^{2}$	$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 7 & 8 & 10\end{array}$
Find the equation of a circle with centre (a,b) and radius $r(x-a)^{2}+(y-b)^{2}=r^{2}$	12345678910
Find the equation of a circle in general form $x^{2}+y^{2}+2 g x+2 f y+c=0$	12345678910
Find the centre and radius of a circle in any form	12345678910
Find the equation of a tangent to a circle	123345678910
Use the discriminant to determine the number of points of contact between a line and circle	12345678910
Find the point/points of intersection between a line and a circle	$12 \begin{array}{llllllllll}10\end{array}$
Know if two circles never touch, touch once internally / externally or touch twice	12345678910

Rothesay Academy

CfE Higher Mathematics

	How well do I understand?
Trigonometry	
State the exact values of $\sin / \mathrm{cos} / \mathrm{tan}$ for angles: $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ} \& 90^{\circ}$	12345678910
Convert between degrees and radians	$12 \begin{array}{lllllllll} \\ 1 & 3 & 4 & 6 & 8 & 10\end{array}$
Solve simple linear trigonometric equations	12345678910
Solve trigonometric equations with multiple angles	12345678910
Solve trigonometric equations involving squared functions	12345678910
Solve quadratic trigonometric equations	12345678910
Solve trigonometric equations with phase angles	$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 8 & 9\end{array}$
Use trigonometric identities to simplify and solve trigonometric equations	12345678910
Use the addition formulae to solve problems	$12 \begin{array}{llllllllll}10\end{array}$
Use the additional formulae to find the related angle formulae	12345678910
Use the double angle formulae to solve problems	122345678910
Use the addition \& double angle formulae to simplify and solve trigonometric equations	12345678910

Rothesay Academy

CfE Higher Mathematics

Mathematics Department

Block 3

	How well do l understand?
Vectors	
Use vectors to prove collinearity of points	12345678910
Write column vectors in terms of the unit vectors i, i and \underline{k}	$\begin{array}{lllllllllll}1 & 2 & 3 & 5 & 6 & 7 & 8 & 10\end{array}$
Use vectors to divide a line in a given ratio	$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 6 & 7 & 8 & 9\end{array}$
Use the scalar product to show that vectors are perpendicular	$\begin{array}{lllllllllll}1 & 2 & 4 & 5 & 6 & 7 & 9\end{array}$
Use the scalar product to find the angle between vectors	12345678910

	How well do l understand?
Further Calculus	
Differentiate $\sin x$ and $\cos x$	12345678910
Integrate $\sin x$ and $\cos x$	12345678910
Use the Chain Rule to differentiate a function of the form $f(x)=(a x+b)^{n}$	12345678910
Integrate a function of the form $f(x)=(a x+b)^{n}$	12345678910

Rothesay Academy

CfE Higher Mathematics

Mathematics Department

Block 3

How well do I understand?

Logarithms and Exponentials

Convert between logarithmic and exponential forms $y=a^{x} \leftrightarrow x=\log _{a} y$	12345678910
Use the rules of logs $\log _{a} 1=0, \quad \log _{a} a=1, \quad \log _{a} x+\log _{a} y=\log _{a} x y, \quad \log _{a} x-\log _{a} y=\log _{a} \frac{x}{y}, \quad \log _{a} x^{n}=n \log _{a} x$	12345678910
Solve logarithmic equations	12345678910
Solve exponential problems	12345678910
Use the graph of $\log _{a} y$ against x to find the equation connecting x and y in the form $y=a b^{x}$	12345678910
Use the graph of $\log _{a} y$ against $\log _{a} x$ to find the equation connecting x and y in the form $y=a x^{n}$	12345678910

