Old Past Papers - Polynomials

[SQA]

1. (a) Express $f(x)=x^{2}-4 x+5$ in the form $f(x)=(x-a)^{2}+b$.
(b) On the same diagram sketch:
(i) the graph of $y=f(x)$;
(ii) the graph of $y=10-f(x)$.
(c) Find the range of values of x for which $10-f(x)$ is positive.
2. For what value of k does the equation $x^{2}-5 x+(k+6)=0$ have equal roots?
3. Show that the equation $(1-2 k) x^{2}-5 k x-2 k=0$ has real roots for all integer values of k.
4. The diagram shows part of the graph of the curve with equation $y=2 x^{3}-7 x^{2}+4 x+4$.
(a) Find the x-coordinate of the maximum turning point.
(b) Factorise $2 x^{3}-7 x^{2}+4 x+4$.
(c) State the coordinates of the point A and hence find the values of x for which $2 x^{3}-7 x^{2}+4 x+4<0$.

5. (a) Given that $x+2$ is a factor of $2 x^{3}+x^{2}+k x+2$, find the value of k.
(b) Hence solve the equation $2 x^{3}+x^{2}+k x+2=0$ when k takes this value.
6. The diagram shows a sketch of the graph of $y=x^{3}-3 x^{2}+2 x$.
(a) Find the equation of the tangent to this curve at the point where $x=1$.
(b) The tangent at the point $(2,0)$ has equation $y=2 x-4$. Find the coordinates of the point where this tangent meets the curve again.

7. The diagram shows a sketch of a parabola passing through $(-1,0)$, $(0, p)$ and $(p, 0)$.
(a) Show that the equation of the parabola is $y=p+(p-1) x-x^{2}$.

(b) For what value of p will the line $y=x+p$ be a tangent to this curve?
8. The parabola shown crosses the x-axis at $(0,0)$ and $(4,0)$, and has a maximum at $(2,4)$.
The shaded area is bounded by the parabola, the x-axis and the lines $x=2$ and $x=k$.
(a) Find the equation of the parabola.
(b) Hence show that the shaded area, A, is given by

$$
A=-\frac{1}{3} k^{3}+2 k^{2}-\frac{16}{3} .
$$

