Old Past Papers - Integration

[SQA]

1. Find $\int \frac{\left(x^{2}-2\right)\left(x^{2}+2\right)}{x^{2}} d x, x \neq 0$.
2. The parabola shown crosses the x-axis at $(0,0)$ and $(4,0)$, and has a maximum at $(2,4)$.
The shaded area is bounded by the parabola, the x-axis and the lines $x=2$ and $x=k$.
(a) Find the equation of the parabola.
(b) Hence show that the shaded area, A, is given by

$$
A=-\frac{1}{3} k^{3}+2 k^{2}-\frac{16}{3} .
$$

3. The diagram shows a sketch of the graphs of $y=5 x^{2}-15 x-8$ and $y=x^{3}-12 x+1$.
The two curves intersect at A and touch at B, i.e. at B the curves have a common tangent.

(a) (i) Find the x-coordinates of the point of the curves where the gradients are equal.
(ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
(b) The point A is $(-1,12)$ and B is $(3,-8)$.

Find the area enclosed between the two curves.
4. A firm asked for a logo to be designed involving the letters A and U. Their initial sketch is shown in the hexagon.
A mathematical representation of the final logo is shown in the coordinate diagram.
The curve has equation $y=(x+1)(x-1)(x-3)$ and the straight line has equation $y=5 x-5$. The point $(1,0)$ is the centre of half-turn symmetry.
Calculate the total shaded area.

5. Calculate the shaded area enclosed between the parabolas with equations $y=1+10 x-2 x^{2}$ and $y=1+5 x-x^{2}$.

6

7. The graph of $y=f(x)$ passes through the point $\left(\frac{\pi}{9}, 1\right)$.

If $f^{\prime}(x)=\sin (3 x)$ express y in terms of x.
8. A curve for which $\frac{d y}{d x}=3 \sin (2 x)$ passes through the point $\left(\frac{5 \pi}{12}, \sqrt{3}\right)$.

Find y in terms of x.
[SQA] 9. Find $\int \frac{1}{(7-3 x)^{2}} d x$.

