Old Past Papers - Functions and Graphs

1. The diagram shows a sketch of part of the graph of $y=\log _{2}(x)$.

(a) State the values of a and b.
(b) Sketch the graph of $y=\log _{2}(x+1)-3$.
2. $f(x)=3-x$ and $g(x)=\frac{3}{x}, x \neq 0$.
(a) Find $p(x)$ where $p(x)=f(g(x))$.
(b) If $q(x)=\frac{3}{3-x}, x \neq 3$, find $p(q(x))$ in its simplest form.
3. Given $f(x)=x^{2}+2 x-8$, express $f(x)$ in the form $(x+a)^{2}-b$.
4. (a) Express $f(x)=x^{2}-4 x+5$ in the form $f(x)=(x-a)^{2}+b$.
(b) On the same diagram sketch:
(i) the graph of $y=f(x)$;
(ii) the graph of $y=10-f(x)$.
(c) Find the range of values of x for which $10-f(x)$ is positive.
5. A sketch of the graph of $y=f(x)$ where $f(x)=x^{3}-6 x^{2}+9 x$ is shown below. The graph has a maximum at A and a minimum at $B(3,0)$.

(a) Find the coordinates of the turning point at A .
(b) Hence sketch the graph of $y=g(x)$ where $g(x)=f(x+2)+4$.

Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
(c) Write down the range of values of k for which $g(x)=k$ has 3 real roots.
6. The diagram shows the graphs of two quadratic functions $y=f(x)$ and $y=g(x)$. Both graphs have a minimum turning point at $(3,2)$.
Sketch the graph of $y=f^{\prime}(x)$ and on the same diagram sketch the graph of $y=g^{\prime}(x)$.

7. The graph of a function f intersects the x-axis at $(-a, 0)$ and $(e, 0)$ as shown.
There is a point of inflexion at $(0, b)$ and a maximum turning point at (c, d).
Sketch the graph of the derived function f^{\prime}.

[SQA]
8. The diagram shows part of the graph of the curve with equation $y=2 x^{3}-7 x^{2}+4 x+4$.
(a) Find the x-coordinate of the maximum turning point.
(b) Factorise $2 x^{3}-7 x^{2}+4 x+4$.
(c) State the coordinates of the point A and hence find the values of x for which $2 x^{3}-7 x^{2}+4 x+4<0$.

9. Functions $f(x)=\sin x, g(x)=\cos x$ and $h(x)=x+\frac{\pi}{4}$ are defined on a suitable set of real numbers.
(a) Find expressions for:
(i) $f(h(x))$;
(ii) $g(h(x))$.
(b) (i) Show that $f(h(x))=\frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x$.
(ii) Find a similar expression for $g(h(x))$ and hence solve the equation $f(h(x))-g(h(x))=1$ for $0 \leq x \leq 2 \pi$.
10. Functions f and g are defined on suitable domains by $f(x)=\sin \left(x^{\circ}\right)$ and $g(x)=2 x$.
(a) Find expressions for:
(i) $f(g(x))$;
(ii) $g(f(x))$.
(b) Solve $2 f(g(x))=g(f(x))$ for $0 \leq x \leq 360$.
11. (a) Solve the equation $\sin 2 x^{\circ}-\cos x^{\circ}=0$ in the interval $0 \leq x \leq 180$.
(b) The diagram shows parts of two trigonometric graphs, $y=\sin 2 x^{\circ}$ and $y=\cos x^{\circ}$.

Use your solutions in (a) to write down the coordinates of the point P .

12. The diagram shows the graph of a cosine function from 0 to π.
(a) State the equation of the graph.
(b) The line with equation $y=-\sqrt{3}$ intersects this graph at point A and B.
Find the coordinates of B.

