Old Past Papers - Differentiation

1. Find the coordinates of the point on the curve $y=2 x^{2}-7 x+10$ where the tangent to the curve makes an angle of 45° with the positive direction of the x-axis.
2. The graph of a function f intersects the x-axis at $(-a, 0)$ and $(e, 0)$ as shown.
There is a point of inflexion at $(0, b)$ and a maximum turning point at (c, d).
Sketch the graph of the derived function f^{\prime}.

3. A goldsmith has built up a solid which consists of a triangular prism of fixed volume with a regular tetrahedron at each end.
The surface area, A, of the solid is given by

$$
A(x)=\frac{3 \sqrt{3}}{2}\left(x^{2}+\frac{16}{x}\right)
$$

where x is the length of each edge of the tetrahedron.
Find the value of x which the goldsmith should use to minimise the amount of gold plating required to cover the
 solid.
4. A company spends x thousand pounds a year on advertising and this results in a profit of P thousand pounds. A mathematical model, illustrated in the diagram, suggests that P and x are related by $P=12 x^{3}-x^{4}$ for $0 \leq x \leq 12$.
Find the value of x which gives the maximum profit.

5. The shaded rectangle on this map represents the planned extension to the village hall. It is hoped to provide the largest possible area for the extension.

The coordinate diagram represents the right angled triangle of ground behind the hall. The extension has length l metres and breadth b metres, as shown. One corner of the extension is at the point $(a, 0)$.

(a) (i) Show that $l=\frac{5}{4} a$.
(ii) Express b in terms of a and hence deduce that the area, $A \mathrm{~m}^{2}$, of the extension is given by $A=\frac{3}{4} a(8-a)$.
(b) Find the value of a which produces the largest area of the extension.
6. A curve has equation $y=x-\frac{16}{\sqrt{x}}, x>0$.

Find the equation of the tangent at the point where $x=4$.
(a) Find the coordinates of the turning point at A.
(b) Hence sketch the graph of $y=g(x)$ where $g(x)=f(x+2)+4$.

Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
(c) Write down the range of values of k for which $g(x)=k$ has 3 real roots.
8. The diagram shows a sketch of the graph of $y=x^{3}-3 x^{2}+2 x$.
(a) Find the equation of the tangent to this curve at the point where $x=1$.
(b) The tangent at the point $(2,0)$ has equation $y=2 x-4$. Find the coordinates of the point where this tangent meets the curve again.

9. The diagram shows part of the graph of the curve with equation $y=2 x^{3}-7 x^{2}+4 x+4$.
(a) Find the x-coordinate of the maximum turning point.
(b) Factorise $2 x^{3}-7 x^{2}+4 x+4$.
(c) State the coordinates of the point A and hence find the values of x for which $2 x^{3}-7 x^{2}+4 x+4<0$.

[SQA] 10. The diagram shows a sketch of the graphs of $y=5 x^{2}-15 x-8$ and $y=x^{3}-12 x+1$.

The two curves intersect at A and touch at B, i.e. at B the curves have a common tangent.

(a) (i) Find the x-coordinates of the point of the curves where the gradients are equal.
(ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
(b) The point A is $(-1,12)$ and B is $(3,-8)$.

Find the area enclosed between the two curves.
[SQA] 11. Find the equation of the tangent to the curve $y=2 \sin \left(x-\frac{\pi}{6}\right)$ at the point where $x=\frac{\pi}{3}$.

