Old Past Papers - Straight Line

hsn.uk.net

The two curves intersect at A and touch at B, i.e. at B the curves have a common tangent.

- (*a*) (i) Find the *x*-coordinates of the point of the curves where the gradients are equal.
 - (ii) By considering the corresponding *y*-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
- (b) The point A is (-1, 12) and B is (3, -8).

Find the area enclosed between the two curves.

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
(ai)	4	С	NC	C4	$x = \frac{1}{3}$ and $x = 3$	2000 P1 Q4
(aii)	1	С	NC	CGD	parallel and coincident	
(<i>b</i>)	5	С	NC	C17	$21\frac{1}{3}$	
•1 •2 •3 •4 •5 •6 •7 •8 •9 •10	ss: knc pd: diff pd: forr ic: inte ic: inte ss: knc curves ic: inte pd: forr pd: pro pd: pro	ow to dif erentiate r equati erpret so erpret di ow how erpret lin n integr cess inte cess lim	f. and e on lution agram to find nits al gration its	equate area between	•1 find derivatives and equa •2 $3x^2 - 12$ and $10x - 15$ •3 $3x^2 - 10x + 3 = 0$ •4 $x = 3, x = \frac{1}{3}$ •5 tangents at $x = \frac{1}{3}$ are $x = 3$ coincident •6 $\int (\text{cubic} - \text{parabola})$ or $\int (\text{cubic}) - \int (\text{parabola})$ •7 $\int_{-1}^{3} \cdots dx$ •8 $\int (x^3 - 5x^2 + 3x + 9) dx$ on •9 $[\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{3}{2}x^2 + 9x]_{-1}^{3}$ •10 $21\frac{1}{3}$	te parallel, at) r equiv. or equiv.

1

5

[SQA] 2. Triangle ABC has vertices A(2,2), B(12,2) and C(8,6).

- (*a*) Write down the equation of *l*₁, the perpendicular bisector of AB.
- (*b*) Find the equation of l_2 , the perpendicular bisector of AC.
- (c) Find the point of intersection of lines l_1 and l_2 .
- (*d*) Hence find the equation of the circle passing through A, B and C.

Questions marked '[SQA]' © SQA

All others (C) Higher Still Notes

1

2

Content Marks U2 OC4 Part Level Calc. Answer С CN G3, G7 x = 72001 P2 Q7 *(a)* 1 3x + 2y = 23*(b)* 4 С CN G7 1 С CN (7,1)(*C*) G8 (d)2 A/B CN G8, G9, G10 $(x-7)^2 + (y-1)^2 = 26$ • x = 7•¹ ic: state equation of a vertical line •² pd: process coord. of a midpoint •² midpoint = (5, 4)•³ $m_{AC} = \frac{2}{3}$ •⁴ $m_{\perp} = -\frac{3}{2}$ •³ ss: find gradient of AC •⁴ ic: state gradient of perpendicular • $y - 4 = -\frac{3}{2}(x - 5)$ •⁵ ic: state equation of straight line •6 pd: find pt of intersection • x = 7, y = 1•⁷ ss: use standard form of circle equ. •⁷ $(x-7)^2 + (y-1)^2$ •⁸ $(x-7)^2 + (y-1)^2 = 26$ ic: find radius and complete or •⁷ $x^2 + y^2 - 14x - 2y + c = 0$ •⁸ c = 24

hsn.uk.net

Quest

- [SQA] 3. (*a*) Find the equation of AB, the perpendicular bisector of the line joing the points P(-3,1) and Q(1,9).
 - (*b*) C is the centre of a circle passing through P and Q. Given that QC is parallel to the *y*-axis, determine the equation of the circle.
 - (c) The tangents at P and Q intersect at T.

Write down

- (i) the equation of the tangent at Q
- (ii) the coordinates of T.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	4	С	CN	G7	x + 2y = 9	2000 P2 Q2
<i>(b)</i>	3	С	CN	G10	$(x-1)^2 + (y-4)^2 = 25$	
(C)	2	С	CN	G11, G8	(i) $y = 9$, (ii) T(-9,9)	
•1 •2 •3 •4 •5 •6 •7 •8 •9	ss: kno pd: pro ss: kno ic: stat ic: inte pd: pro ic: stat ic: inte ss: kno	ow to us acess gra ow how t erpret "p acess rad ace equ. o erpret di ow to us	e midpo dient of to find p f line parallel ius f circle agram e equ. c	pint PQ perp. gradient to <i>y</i> -axis″ of AB	•1 midpoint = $(-1,5)$ •2 $m_{PQ} = \frac{9-1}{1-(-1)}$ •3 $m_{\perp} = -\frac{1}{2}$ •4 $y - 5 = -\frac{1}{2}(x - (-1))$ •5 $y_{C} = 4$ stated or implied b •6 radius = 5 or equiv. stated or implied by •7 •7 $(x - 1)^{2} + (y - 4)^{2} = 25$ •8 $y = 9$ •9 $T = (-9,9)$	y ● ⁷

Quest

Q

 P_{\uparrow}

1.8

-30

- [SQA] 4. The results of an experiment give rise to the graph shown.
 - (*a*) Write down the equation of the line in terms of *P* and *Q*.

It is given that $P = \log_e p$ and $Q = \log_e q$.

(b) Show that p and q satisfy a relationship of the form $p = aq^b$, stating the values of a and b.

			-	-			
Part	Marks	Level	Calc.	Content		Answer	U3 OC3
<i>(a)</i>	2	A/B	CR	G3		P = 0.6Q + 1.8	2000 P2 Q11
<i>(b)</i>	4	A/B	CR	A33		a = 6.05, b = 0.6	
•1 •2 •3 •4 •5 •6	ic: inte ic: stat ic: inte ss: kne x log y ss: kne log ic: inte	erpret gr e equ. o erpret st ow how ow how erpret su	radient if line raight li v to de to expre um of tw	ne al with <i>x</i> of ess number as 70 logs	M In	• ¹ $m = \frac{1 \cdot 8}{3} = 0.6$ • ² $P = 0.6Q + 1.8$ ethod 1 • ³ $\log_e p = 0.6\log_e q + 1.8$ • ⁴ $\log_e q^{0.6}$ • ⁵ $\log_e 6.05$ • ⁶ $p = 6.05q^{0.6}$ ethod 2 $p = \ln aq^b$ • ³ $\ln p = \ln a + b \ln q$ • ⁴ $\ln p = 0.6 \ln q + 1.8$ state $by \bullet^5 \text{ or } \bullet^6$ • ⁵ $\ln a = 1.8$ • ⁶ $a = 6.05, b = 0.6$	ed or implied

2

[SQA] 5. Find the size of the angle a° that the line joining the points A (0, -1) and B ($3\sqrt{3}$, 2) makes with the positive direction of the *x*-axis.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
	3	С	NC	G2	30	2000 P1 Q3
• ¹ • ² • ³	ss: kno equ. pd: pro ic: inte	ow how cess erpret ex	to find	l gradient or le	•1 $\frac{2-(-1)}{3\sqrt{3-0}}$ •2 $\tan a = \text{gradient}$ stated of •3 $a = 30$	r implied by

[SQA] 6. Find the equation of the straight line which is parallel to the line with equation 2x + 3y = 5 and which passes through the point (2, -1).

3

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
	3	С	CN	G3, G2	2x + 3y = 1	2001 P1 Q1
•1 •2 • ³	ss: exp ic: inte ic: stat	oress in s erpret gr ce equati	tandard adient on of st	l form raight line	• ¹ $y = -\frac{2}{3}x + \frac{5}{3}$ stated or im • ² $m_{\text{line}} = -\frac{2}{3}$ stated or impli- • ³ $y - (-1) = -\frac{2}{3}(x - 2)$	plied by \bullet^2 ied by \bullet^3

- [SQA] 7. Triangle ABC has vertices A(-1,6), B(-3,-2) and C(5,2). Find
 - (*a*) the equation of the line *p*, the median from C of triangle ABC.
 - (*b*) the equation of the line *q*, the perpendicular bisector of BC.
 - (c) the coordinates of the point of intersection of the lines p and q.

Part	Marks	Level	Calc.	Content	Answer	U1 OC1
<i>(a)</i>	3	С	CN	G7	<i>y</i> = 2	2002 P2 Q1
(b)	4	С	CN	G7	y = -2x + 2	
(C)	1	С	CN	G8	(0,2)	
•1 •2 •3 •4 •5 •6 •7 •8	ss: dete pd: dete ic: stat ss: dete pd: dete ss: dete ic: stat pd: pro	ermine r ermine g e equati ermine g ermine g e equati cess inte	nidpoir gradient on of st nidpoir gradient gradient on of st ersection	At coordinates t thro' 2 pts raight line at coordinates t thro' 2 pts t perp. to \bullet^5 raight line	• ¹ F = mid _{AB} = (-2, 2) • ² $m_{FC} = 0$ stated or implied • ³ equ. FC is $y = 2$ • ⁴ M = mid _{BC} = (1,0) • ⁵ $m_{BC} = \frac{1}{2}$ • ⁶ $m_{\perp} = -2$ • ⁷ $y - 0 = -2(x - 1)$ • ⁸ (0,2)	by ● ³

Village hall

8 m

(a, 0)

Manse Lane

(8,0)

x

m Tube Venne

(0,6)

[SQA] 8. The shaded rectangle on this map represents the planned extension to the village hall. It is hoped to provide the largest possible area for the extension.

The coordinate diagram represents the right angled triangle of ground behind the hall. The extension has length l metres and breadth b metres, as shown. One corner of the extension is at the point (a, 0).

- (a) (i) Show that $l = \frac{5}{4}a$.
 - (ii) Express *b* in terms of *a* and hence deduce that the area, $A = \frac{3}{4}a(8-a)$.
- (*b*) Find the value of *a* which produces the largest area of the extension.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
<i>(a)</i>	3	A/B	CN	CGD	proof	2002 P2 Q10
<i>(b)</i>	4	A/B	CN	C11	a = 4	
•1 •2 •3 •4 •5 •6 •7	ss: se through ss: se through ic: com ss: kno pd: diff pd: solv ic: jus table	elect st elect st aplete pr w to set erentiate ve equat tify max	trategy trategy roof t deriva e ion ximum,	and carry and carry tive to zero e.g. nature	•1 proof of $l = \frac{5}{4}a$ •2 $b = \frac{3}{5}(8-a)$ •3 complete proof leading to •4 $\frac{dA}{da} = \dots = 0$ •5 $6 - \frac{3}{2}a$ •6 $a = 4$ •7 e.g. nature table, comp.	o $A = \dots$

Quest

[SQA] 9. Find the coordinates of the point on the curve $y = 2x^2 - 7x + 10$ where the tangent to the curve makes an angle of 45° with the positive direction of the *x*-axis.

4

5

Part	Marks	Level	Calc.	Content	I	Answer	U1 OC3
	4	С	NC	G2, C4	((2,4)	2002 P1 Q4
•1 •2 •3 •4	sp: knc pd: pro ss: equ pd: solv	ow to dif cess gra late equi ve and co	ff., and o dient fr ivalent o omplete	differentiate om angle expressions e	•1 •2 •3 •4	$ \begin{array}{r} 1 & \frac{dy}{dx} = 4x - 7 \\ 2 & m_{\text{tang}} = \tan 45^{\circ} = 1 \\ 3 & 4x - 7 = 1 \\ 4 & (2, 4) \end{array} $	

[SQA] 10. Show that the equation $(1 - 2k)x^2 - 5kx - 2k = 0$ has real roots for all integer values of *k*.

Part	Marks	Level	Calc.	Content		Answer	U2 OC1
	5	A/B	CN	A18, A16, CG	D	proof	2002 P2 Q9
•1 •2 •3 •4 • ⁵	5A/BCNA18, A16, CG•1ss:know to use discriminant•2ic:pick out discriminant•3pd:simplify to quadratic•4ss:choose to draw table or graph•5pd:complete proof using disc. ≥ 0					 •¹ discriminant = •² disc = (-5k)² - 4(1 - 2k) •³ 9k² + 8k •⁴ e.g. draw a table, graph the square •⁵ complete proof and relating to disc.≥ 0 	(-2k) n, complete conclusion

[END OF QUESTIONS]