Old Past Papers - Polynomials

[SQA] 1. (a) Express
$$f(x) = x^2 - 4x + 5$$
 in the form $f(x) = (x - a)^2 + b$.

- (*b*) On the same diagram sketch:
 - (i) the graph of y = f(x);
 - (ii) the graph of y = 10 f(x).
- (c) Find the range of values of x for which 10 f(x) is positive.

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
<i>(a)</i>	2	С	NC	A5	a = 2, b = 1	2002 P1 Q7
(b)	4	С	NC	A3	sketch	
(C)	1	С	NC	A16, A6	-1 < x < 5	
•1 •2 •3 •4 •5 •6	pd: pro square pd: pro square ic: inte ic: inte ss: refl ss: trar	ocess, e ocess, e erpret m erpret y-: ect in x-: nslate pa	.g. co .g. co inimum intercep axis irallel to	mpleting the mpleting the ot oy-axis	 ¹ a = 2 ² b = 1 ³ any two from: parabola; min. t.p. (2,1); ⁴ the remaining one from al ⁵ reflecting in <i>x</i>-axis ⁶ translating +10 units, <i>y</i>-axis 	(0,5) bove list parallel to
•7	ic: inte	erpret gr	aph		• ⁷ (-1,5) i.e. $-1 < x < 5$	

[SQA] 2. For what value of *k* does the equation $x^2 - 5x + (k + 6) = 0$ have equal roots?

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	3	С	CN	A18	$k = \frac{1}{4}$	2001 P1 Q2
•1 •2 •3	 ³ C CN A18 ¹ ss: know to set disc. to zero ² ic: substitute <i>a</i>, <i>b</i> and <i>c</i> into discriminant ³ pd: process equation in <i>k</i> 		• ¹ $b^2 - 4ac = 0$ • ² $(-5)^2 - 4 \times (b^3)^3$ • ³ $k = \frac{1}{4}$	stated or implied by \bullet^2 (k + 6)		

Page 1

2

4 1

[SQA] 3. Show that the equation $(1-2k)x^2 - 5kx - 2k = 0$ has real roots for all integer values of k.

Part	Marks	Level	Calc.	Content		Answer	U2 OC1
	5	A/B	CN	A18, A16, CG	D	proof	2002 P2 Q9
• ¹ ss: know to use discriminant • ² ic: pick out discriminant • ³ pd: simplify to quadratic • ⁴ ss: choose to draw table or graph • ⁵ pd: complete proof using disc. ≥ 0						 ¹ discriminant = ² disc = (-5k)² - 4(1 - 2k) ³ 9k² + 8k ⁴ e.g. draw a table, graph the square ⁵ complete proof and relating to disc.≥ 0 	(-2k) n, complete conclusion

[SQA] 4. The diagram shows part of the graph of the curve with equation $y = 2x^3 - 7x^2 + 4x + 4$.

- (*a*) Find the *x*-coordinate of the maximum turning point.
- (*b*) Factorise $2x^3 7x^2 + 4x + 4$.
- (c) State the coordinates of the point A and hence find the values of x for which $2x^3 7x^2 + 4x + 4 < 0$.

5 3

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	5	С	NC	C8	$x = \frac{1}{3}$	2002 P2 Q3
<i>(b)</i>	3	С	NC	A21	(x-2)(2x+1)(x-2)	
(C)	2	С	NC	A6	$A(-\frac{1}{2},0), x < -\frac{1}{2}$	
•1 •2 •3 •4 •5 •6 •6 •7 •8 •9 •10	ss: kno pd: diff ss: kno pd: star pd: com ss: stra division ic: extr pd: com ic: inte ic: inte	ow to dif erentiate two set to solving aplete so ategy fo act quad aplete the erpret the	ferentia derivat g proces olving p r cubic dratic fa de cubic e factor e diagra	tive to zero ss of equation rocess , e.g. synth. actor factorisation s am	• ¹ $f'(x) =$ • ² $6x^2 - 14x + 4$ • ³ $6x^2 - 14x + 4 = 0$ • ⁴ $(3x - 1)(x - 2)$ • ⁵ $x = \frac{1}{3}$ ··· 2x ² - 3x - 2 • ⁸ $(x - 2)(2x + 1)(x - 2)$ • ⁹ $A(-\frac{1}{2}, 0)$ • ¹⁰ $x < -\frac{1}{2}$	4 0

Page 2

Quest

(*b*) Hence solve the equation $2x^3 + x^2 + kx + 2 = 0$ when *k* takes this value.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	3	С	CN	A21	k = -5	2001 P2 Q1
(b)	2	С	CN	A22	$x = -2, \frac{1}{2}, 1$	
•1 •2 •3 •4 •5	ss: u f(evalua pd: pro pd: pro ss: find pd: pro	use sy ation) cess cess l a quad cess	rnth o	division or ctor	• ¹ $f(-2) = 2(-2)^3 + \cdots$ • ² $2(-2)^3 + (-2)^2 - 2k + 2$ • ³ $k = -5$ • ⁴ $2x^2 - 3x + 1$ or $2x^2 + x^2 + x - 2$ • ⁵ $(2x - 1)(x - 1)$ or $(2x - 1)(x + 2)(x - 1)$ and $x = -2, \frac{1}{2}, 1$	3x - 2 or (x+2) or

- 6. The diagram shows a sketch of the graph of $y = x^3 3x^2 + 2x$. [SQA]
 - (a) Find the equation of the tangent to this curve at the point where x = 1.
 - (*b*) The tangent at the point (2, 0)has equation y = 2x - 4. Find the coordinates of the point where this tangent meets the curve again.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	5	С	CN	C5	x + y = 1	2000 P2 Q1
(<i>b</i>)	5	С	CN	A23, A22, A21	(-1,-6)	
•1 •2 •3 •4 •5 •6 •7 •8 •9 •10	ss: kno pd: diff ss: kno ic: stat ss: equ pd: arra ss: kno pd: pro ic: inte	ow to dif erentiate ow that g ow that y e equ. o ate equa inge in s ow how f cess erpret	ferentia e correc gradient /-coord f line ations standard to solve	te tly f = f'(1) f = f(1)	• $y' =$ • $3x^2 - 6x + 2$ • $y'(1) = -1$ • $y(1) = 0$ • $y - 0 = -1(x - 1)$ • $2x - 4 = x^3 - 3x^2 + 2x$ • $x^3 - 3x^2 + 4 = 0$ ··· $1 -3 0$ • $y = -1$ from wo • $y = -1$ from wo • $y = -1$ from wo	4 rking

Page 3

3

- [SQA] 7. The diagram shows a sketch of a parabola passing through (-1,0), (0, p) and (p, 0).
 - (*a*) Show that the equation of the parabola is $y = p + (p-1)x - x^2$.
 - (*b*) For what value of p will the line y = x + p be a tangent to this curve?

Part	Marks	Level	Calc.	Content	Answ	ver	U2 OC1
<i>(a)</i>	3	A/B	CN	A19	proof		2001 P2 Q11
<i>(b)</i>	3	A/B	CN	A24	2		
•1 •2 •3 •4 •5 •6	(b)3A/BCNA24•1ss:use a standard form of parabola•2ss:use 3rd point to determine k•3pd:complete proof•4ss:equate and simplify to zero•5ss:use discriminant for tangency•6pd:process					= k(x+1)(x-p) = -1 with justification = -1(x+1)(x-p) and + 2x - px = 0 - 4ac = (2-p)^2 = 0 (2-p)^2 - 4 × 0 = 0 = 2	ication (i.e. d complete

[SQA] 8. The parabola shown crosses the *x*-axis at (0,0) and (4,0), and has a maximum at (2,4).

The shaded area is bounded by the parabola, the *x*-axis and the lines x = 2 and x = k.

- (*a*) Find the equation of the parabola.
- (*b*) Hence show that the shaded area, *A*, is given by

$$A = -\frac{1}{3}k^3 + 2k^2 - \frac{16}{3}.$$

3

5

2

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
<i>(a)</i>	2	С	CN	A19	$y = 4x - x^2$	2000 P2 Q4
<i>(b)</i>	3	С	CN	C16	proof	
•1 •2 •3 •4 •5	ic: stat pd: pro ss: kno pd: inte pd: pr proof	e standa cess for ow to int egrate co ocess li	ard form x^2 coeff regrate orrectly mits a	n : nd complete	• ¹ $ax(x-4)$ • ² $a = -1$ • ³ $\int_{2}^{k} (\text{function from (a)})$ • ⁴ $-\frac{1}{3}x^{3} + 2x^{2}$ • ⁵ $-\frac{1}{3}k^{3} + 2k^{2} - (-\frac{8}{3} + 8)$	

[SQA] 9. For what range of values of k does the equation $x^2 + y^2 + 4kx - 2ky - k - 2 = 0$ represent a circle?

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	5	А	NC	G9, A17	for all <i>k</i>	2000 P1 Q6
 •¹ ss: know to examine radius •² pd: process •³ pd: process •⁴ ic: interpret quadratic inequation •⁵ ic: interpret quadratic inequation 					• ¹ $g = 2k, f = -k, c = -k - stated or implied by •2$ • ² $r^2 = 5k^2 + k + 2$ • ³ (real $r \Rightarrow$) $5k^2 + k + 2 > 0$ • ⁴ use discr. or complete sq. • ⁵ true for all k	2 $(accept \geq)$ or diff.

[END OF QUESTIONS]