Old Past Papers - Polynomials

1. (a) Express $f(x)=x^{2}-4 x+5$ in the form $f(x)=(x-a)^{2}+b$.
(b) On the same diagram sketch:
(i) the graph of $y=f(x)$;
(ii) the graph of $y=10-f(x)$.
(c) Find the range of values of x for which $10-f(x)$ is positive.

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
(a)	2	C	NC	A5	$a=2, b=1$	2002 P1 Q7
(b)	4	C	NC	A3	sketch	
(c)	1	C	NC	A16, A6	$-1<x<5$	

- ${ }^{1}$ pd: process, e.g. completing the square
${ }^{2}$ pd: process, e.g. completing the square
${ }^{3}$ ic: interpret minimum
${ }^{4}$ ic: interpret y-intercept
${ }^{5}$ ss: reflect in x-axis
- 6 ss: translate parallel to y-axis
${ }^{7}$ ic: interpret graph
- $1 a=2$
- ${ }^{2} b=1$
-3 any two from: parabola; min. t.p. $(2,1) ;(0,5)$
${ }^{4}$ the remaining one from above list
${ }^{5}$ reflecting in x-axis
${ }^{6}$ translating +10 units, parallel to y-axis
${ }^{7}(-1,5)$ i.e. $-1<x<5$

2. For what value of k does the equation $x^{2}-5 x+(k+6)=0$ have equal roots?

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	3	C	CN	A18	$k=\frac{1}{4}$	2001 P1 Q2

-1 ss: know to set disc. to zero
\bullet ic: substitute a, b and c into discriminant

- 3 pd: process equation in k
$\bullet^{1} b^{2}-4 a c=0$ stated or implied by \bullet^{2}
- ${ }^{2}(-5)^{2}-4 \times(k+6)$
- ${ }^{3} k=\frac{1}{4}$

3. Show that the equation $(1-2 k) x^{2}-5 k x-2 k=0$ has real roots for all integer values of k.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	5	A/B	CN	A18, A16, CGD	proof	2002 P2 Q9

- 1 ss: know to use discriminant
\bullet^{2} ic: pick out discriminant
- ${ }^{3}$ pd: simplify to quadratic
- ${ }^{4}$ ss: choose to draw table or graph
${ }^{5}$ pd: complete proof using disc. ≥ 0
- ${ }^{1}$ discriminant $=\ldots$
- 2 disc $=(-5 k)^{2}-4(1-2 k)(-2 k)$
- $9 k^{2}+8 k$
${ }^{4}$ e.g. draw a table, graph, complete the square
\bullet complete proof and conclusion relating to disc. ≥ 0

4. The diagram shows part of the graph of the curve with equation $y=2 x^{3}-7 x^{2}+4 x+4$.
(a) Find the x-coordinate of the maximum turning point.
(b) Factorise $2 x^{3}-7 x^{2}+4 x+4$.
(c) State the coordinates of the point A and hence find the values of x for which $2 x^{3}-7 x^{2}+4 x+4<0$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(a)	5	C	NC	C8	$x=\frac{1}{3}$	2002 P2 Q3
(b)	3	C	NC	A21	$(x-2)(2 x+1)(x-2)$	
(c)	2	C	NC	A6		

- ${ }^{1}$ ss: know to differentiate
${ }^{\bullet}{ }^{2}$ pd: differentiate
-3 ss: know to set derivative to zero
${ }^{4}$ pd: start solving process of equation
${ }^{5}$ pd: complete solving process
${ }^{6}$ ss: strategy for cubic, e.g. synth. division
${ }^{\circ}$ ic: extract quadratic factor
- 8 pd : complete the cubic factorisation
- ${ }^{9}$ ic: interpret the factors
${ }^{-10}$ ic: interpret the diagram
- ${ }^{1} f^{\prime}(x)=\ldots$
- $2 x^{2}-14 x+4$
- $6 x^{2}-14 x+4=0$
- ${ }^{4}(3 x-1)(x-2)$
- $5 x=\frac{1}{3}$

- $2 x^{2}-3 x-2$
$\bullet^{8}(x-2)(2 x+1)(x-2)$
- $\mathrm{A}\left(-\frac{1}{2}, 0\right)$
- ${ }^{10} x<-\frac{1}{2}$

5. (a) Given that $x+2$ is a factor of $2 x^{3}+x^{2}+k x+2$, find the value of k.
(b) Hence solve the equation $2 x^{3}+x^{2}+k x+2=0$ when k takes this value.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(a)	3	C	CN	A21	$k=-5$	2001 P2 Q1
(b)	2	C	CN	A22	$x=-2, \frac{1}{2}, 1$	

- ${ }^{1}$ ss: use synth division or f (evaluation)
- 2 pd: process
- 3 pd: process
${ }^{4}$ ss: find a quadratic factor
${ }^{5}$ pd: process
- $1 \quad f(-2)=2(-2)^{3}+\cdots$
-2 $2(-2)^{3}+(-2)^{2}-2 k+2$
- ${ }^{3} k=-5$
- $2 x^{2}-3 x+1$ or $2 x^{2}+3 x-2$ or $x^{2}+x-2$
- ${ }^{5}(2 x-1)(x-1)$ or $(2 x-1)(x+2)$ or $(x+2)(x-1)$
and $x=-2, \frac{1}{2}, 1$

6. The diagram shows a sketch of the graph of $y=x^{3}-3 x^{2}+2 x$.
(a) Find the equation of the tangent to this curve at the point where $x=1$.
(b) The tangent at the point $(2,0)$ has equation $y=2 x-4$. Find the coordinates of the point where this tangent meets the curve again.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(a)	5	C	CN	C5	$x+y=1$	2000 P2 Q1
(b)	5	C	CN	A23, A22, A21	$(-1,-6)$	

- ${ }^{1}$ ss: know to differentiate
- ${ }^{2}$ pd: differentiate correctly
\bullet^{3} ss: know that gradient $=f^{\prime}(1)$
$\bullet 4$ ss: know that y-coord $=f(1)$
$\bullet{ }^{5}$ ic: state equ. of line
- ${ }^{6}$ ss: equate equations
${ }^{-7} \mathrm{pd}$: arrange in standard form
- ${ }^{8}$ ss: know how to solve cubic
${ }^{9}$ pd: process
- 10 ic: interpret
- ${ }^{1} y^{\prime}=\ldots$
- $23 x^{2}-6 x+2$
- $y^{\prime}(1)=-1$
-4 $y(1)=0$
${ }^{5} y-0=-1(x-1)$
- $62 x-4=x^{3}-3 x^{2}+2 x$
- ${ }^{7} x^{3}-3 x^{2}+4=0$

	$1-3$	0	4
$\bullet 8$	\ldots	\ldots	. .
	\cdots	\ldots	. .

\bullet identify $x=-1$ from working

- ${ }^{10}(-1,-6)$

7. The diagram shows a sketch of a parabola passing through $(-1,0)$, $(0, p)$ and $(p, 0)$.
(a) Show that the equation of the parabola is $y=p+(p-1) x-x^{2}$.

(b) For what value of p will the line $y=x+p$ be a tangent to this curve?

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(a)	3	A/B	CN	A19	proof	2001 P2 Q11
(b)	3	A/B	CN	A24	2	

-1 ss: use a standard form of parabola

- ${ }^{2}$ ss: use 3rd point to determine k
${ }^{3}$ pd: complete proof
- ${ }^{4}$ ss: equate and simplify to zero
${ }^{5}$ ss: use discriminant for tangency
${ }^{6}$ pd: process
-1 $y=k(x+1)(x-p)$
$\bullet^{2} k=-1$ with justification (i.e. substitute $(0, p))$
-3 $y=-1(x+1)(x-p)$ and complete
${ }^{4} x^{2}+2 x-p x=0$
- ${ }^{5} b^{2}-4 a c=(2-p)^{2}=0$ or $(2-p)^{2}-4 \times 0=0$
- $\quad p=2$
[SQA]

8. The parabola shown crosses the x-axis at $(0,0)$ and $(4,0)$, and has a maximum at $(2,4)$.
The shaded area is bounded by the parabola, the x-axis and the lines $x=2$ and $x=k$.
(a) Find the equation of the parabola.
(b) Hence show that the shaded area, A,
 is given by

$$
A=-\frac{1}{3} k^{3}+2 k^{2}-\frac{16}{3}
$$

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
(a)	2	C	CN	A19	$y=4 x-x^{2}$	2000 P2 Q4
(b)	3	C	CN	C16	proof	

-1 ic: state standard form

- ${ }^{2}$ pd: process for x^{2} coeff.
-3 ss: know to integrate
${ }^{4}$ pd: integrate correctly
\bullet pd: process limits and complete proof
-1 $\operatorname{ax}(x-4)$
- $2 a=-1$
- \int_{2}^{k} (function from (a))
- ${ }^{4}-\frac{1}{3} x^{3}+2 x^{2}$
${ }^{5}-\frac{1}{3} k^{3}+2 k^{2}-\left(-\frac{8}{3}+8\right)$

9. For what range of values of k does the equation $x^{2}+y^{2}+4 k x-2 k y-k-2=0$ represent a circle?

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	5	A	NC	G9, A17	for all k	2000 P1 Q6

-1 ss: know to examine radius
${ }^{2}{ }^{2}$ pd: process

- ${ }^{3}$ pd: process
- ${ }^{4}$ ic: interpret quadratic inequation
- 5 ic: interpret quadratic inequation
${ }^{1} g=2 k, f=-k, c=-k-2$ stated or implied by \bullet^{2}
- ${ }^{2} r^{2}=5 k^{2}+k+2$
$\bullet^{3} \quad($ real $r \Rightarrow) 5 k^{2}+k+2>0($ accept $\geq)$
- ${ }^{4}$ use discr. or complete sq. or diff.
${ }^{5}$ true for all k

