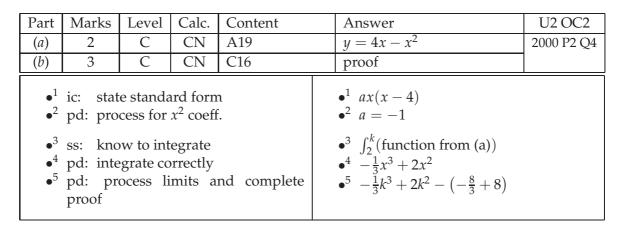
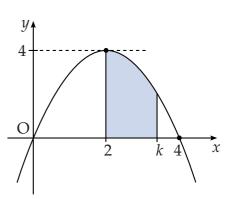
Old Past Papers - Integration

[SQA] 1. Find
$$\int \frac{(x^2 - 2)(x^2 + 2)}{x^2} dx, x \neq 0.$$

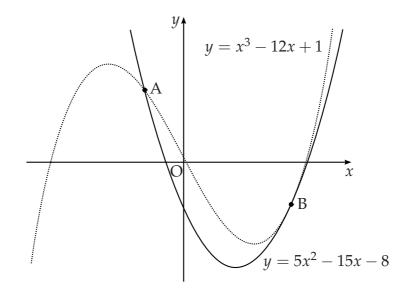

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
	4	С	CN	C14, C12, C13	$\frac{1}{3}x^3 + 4x^{-1} + c$	2001 P2 Q6
• ² • ³	ss: star pd: con pd: inte pd: inte	nplete p egrate	rocess	ndard form lex	•1 $\frac{x^4 - 4}{x^2}$ •2 $x^2 - 4x^{-2}$ •3 $\frac{1}{3}x^3 + c$ •4 $\frac{-4x^{-1}}{-1}$	


2. The parabola shown crosses the *x*-axis at [SQA] (0,0) and (4,0), and has a maximum at (2,4).

> The shaded area is bounded by the parabola, the *x*-axis and the lines x = 2and x = k.

- (*a*) Find the equation of the parabola.
- (*b*) Hence show that the shaded area, *A*, is given by

$$A = -\frac{1}{3}k^3 + 2k^2 - \frac{16}{3}.$$



2

[SQA] 3. The diagram shows a sketch of the graphs of $y = 5x^2 - 15x - 8$ and $y = x^3 - 12x + 1$.

The two curves intersect at A and touch at B, i.e. at B the curves have a common tangent.

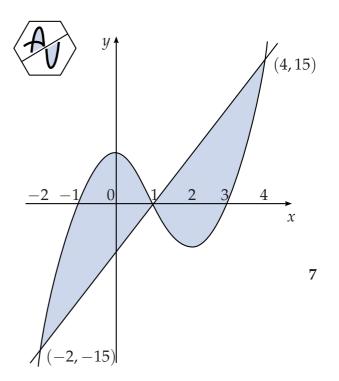
- (*a*) (i) Find the *x*-coordinates of the point of the curves where the gradients are equal.
 - (ii) By considering the corresponding *y*-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
- (b) The point A is (-1, 12) and B is (3, -8).

Find the area enclosed between the two curves.

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
(ai)	4	С	NC	C4	$x = \frac{1}{3}$ and $x = 3$	2000 P1 Q4
(aii)	1	С	NC	CGD	parallel and coincident	
<i>(b)</i>	5	С	NC	C17	$21\frac{1}{3}$	
•2 •3 •4 •5 •6 •7 •8 •9	ss: knc pd: diff pd: forn ic: inte ic: inte ss: knc curves ic: inte pd: forn pd: pro pd: pro	erentiate m equation erpret so erpret di ow how erpret lir m integr cess inte	e ion olution agram to find nits ral egratior	area between	•1 find derivatives and equa •2 $3x^2 - 12$ and $10x - 15$ •3 $3x^2 - 10x + 3 = 0$ •4 $x = 3, x = \frac{1}{3}$ •5 tangents at $x = \frac{1}{3}$ are $x = 3$ coincident •6 $\int (\text{cubic} - \text{parabola})$ or $\int (\text{cubic}) - \int (\text{parabola})$ •7 $\int_{-1}^{3} \cdots dx$ •8 $\int (x^3 - 5x^2 + 3x + 9) dx$ o •9 $[\frac{1}{4}x^4 - \frac{5}{3}x^3 + \frac{3}{2}x^2 + 9x]_{-1}^{3}$ •10 $21\frac{1}{3}$	parallel, at a) r equiv.

1

5

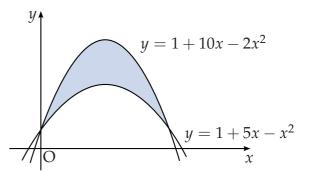

4

[SQA] 4. A firm asked for a logo to be designed involving the letters A and U. Their initial sketch is shown in the hexagon.

> A mathematical representation of the final logo is shown in the coordinate diagram.

> The curve has equation y = (x + 1)(x - 1)(x - 3) and the straight line has equation y = 5x - 5. The point (1,0) is the centre of half-turn symmetry.

Calculate the total shaded area.


Part	Marks	Level	Calc.	Content	Answer U2 OC2
	7	С	CN	C17	$40\frac{1}{2} \text{ units}^2$ 2001 P2 Q8
•2 •3 •4 •5 •6	ss: exp ss: spli ss: sub pd: pro pd: pro pd: pro ic: use total are	t area ar tract fur cess cess cess e symme	nd integ nctions		• $y = x^3 - 3x^2 - x + 3$ • $\int_{1}^{4} () dx$ or $\int_{-2}^{1} () dx$ • $\int [(5x - 5) - (x^3 - 3x^2 - x + 3)] dx$ or $\int [(x^3 - 3x^2 - x + 3) - (5x - 5)] dx$ • $\int [(-x^3 + 3x^2 + 6x - 8) dx]$ • $\int [-\frac{1}{4}x^4 + x^3 + 3x^2 - 8x]$ • $20\frac{1}{4}$ or $-20\frac{1}{4}$ depending on chosen integrals • $\int 40\frac{1}{2}$

Quest

6

4

[SQA] 5. Calculate the shaded area enclosed between the parabolas with equations $y = 1 + 10x - 2x^2$ and $y = 1 + 5x - x^2$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
	6	С	CN	C17	$20\frac{5}{6}$	2002 P2 Q5
•2 •3 •4 •5	ss: find ss: kno ss: kno lower) pd: sim pd: inte pd: pro	ow to fin ow to plify egrate	d limits integra	s te (upper –	• ¹ 1+10x - 2x ² = 1 • ² x = 0,5 and $\int_{0}^{5}()$ • ³ $\int ((1+10x-2x^{2}))$ • ⁴ $\int (5x-x^{2}) dx$ • ⁵ $\frac{5}{2}x^{2} - \frac{1}{3}x^{3}$ • ⁶ 20 $\frac{5}{6}$	

[SQA] 6. A point moves in a straight line such that its acceleration *a* is given by $a = 2(4-t)^{\frac{1}{2}}, 0 \le t \le 4$. If it starts at rest, find an expression for the velocity *v* where $a = \frac{dv}{dt}$.

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
	4	С	NC	C18, C22	$V = -\frac{4}{3}(4-t)^{\frac{3}{2}} + \frac{32}{3}$	2002 P2 Q8
• ² • ³	pd: inte	egrate initial c	onditio	acceleration ns with const.	• ¹ $V = \int (2(4-t)^{\frac{1}{2}}) dt$ state by • ² • ² $2 \times \frac{1}{-\frac{3}{2}} (4-t)^{\frac{3}{2}}$ • ³ $0 = 2 \times \frac{1}{-\frac{3}{2}} (4-0)^{\frac{3}{2}} + c$ • ⁴ $c = 10\frac{2}{3}$	ed or implied

[SQA] 7. The graph of y = f(x) passes through the point $(\frac{\pi}{9}, 1)$.

If $f'(x) = \sin(3x)$ express *y* in terms of *x*.

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
	4	A/B	NC	C18, C23	$y = -\frac{1}{3}\cos(3x) + \frac{7}{6}$	2000 P1 Q8
• ² • ³	ss: kno pd: inte ic: inte pd: pro	egrate erpret (7	0		• $y = \int \sin(3x) dx$ stat • $y = \int \sin(3x) dx$ stat • $-\frac{1}{3}\cos(3x)$ • $1 = -\frac{1}{3}\cos(\frac{3\pi}{9}) + c$ or • $c = \frac{7}{6}$	

[SQA] 8. A curve for which $\frac{dy}{dx} = 3\sin(2x)$ passes through the point $\left(\frac{5\pi}{12}, \sqrt{3}\right)$.

Find y in terms of x.

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
	4	A/B	CN	C18, C23	$y = -\frac{3}{2}\cos(2x) + \frac{1}{4}\sqrt{3}$	2001 P2 Q10
• ² • ³	pd: inte pd: inte ss: use pd: eva	egrate co given p	omposit oint to	e function	• ¹ $\int 3\sin(2x) dx$ stated or in • ² $-\frac{3}{2}\cos(2x)$ • ³ $\sqrt{3} = -\frac{3}{2}\cos(2 \times \frac{5}{12}\pi) +$ • ⁴ $c = \frac{1}{4}\sqrt{3} (\approx 0.4)$, ,

[SQA] 9. Find
$$\int \frac{1}{(7-3x)^2} dx$$
.

PartMarksLevelCalc.ContentAnswerU3 OC22A/BCNC22, C14 $\frac{1}{3(7-3x)} + c$ 2000 P2 Q10•1pd: integrate function•1 $\frac{1}{-1}(7-3x)^{-1}$ •2•2pd: deal with function of function•1 $\frac{1}{-3}$

[END OF QUESTIONS]

Questions marked '[SQA]' © SQA

All others © Higher Still Notes

2

4