Old Past Papers - Functions and Graphs

[SQA]

1. The diagram shows a sketch of part of the graph of $y=\log _{2}(x)$.
(a) State the values of a and b.
(b) Sketch the graph of $y=\log _{2}(x+1)-3$.

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
(a)	1	A/B	CN	A7	$a=1, b=3$	2001 P1 Q10
(b)	3	A/B	CN	A3	sketch	

- 1 pd: use $\log _{p} q=0 \Rightarrow q=1$ and evaluate $\log _{p} p^{k}$
\bullet^{2} ss: use a translation
${ }^{3}$ ic: identify one point
${ }^{-}{ }^{4}$ ic: identify a second point
- $1 \quad a=1$ and $b=3$
-2 a "log-shaped" graph of the same orientation
${ }^{3}$ sketch passes through $(0,-3)$ (labelled)
-4 sketch passes through $(7,0)$ (labelled)

2. $f(x)=3-x$ and $g(x)=\frac{3}{x}, x \neq 0$.
(a) Find $p(x)$ where $p(x)=f(g(x))$.
(b) If $q(x)=\frac{3}{3-x}, x \neq 3$, find $p(q(x))$ in its simplest form.

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
(a)	2	C	CN	A4	$3-\frac{3}{x}$	2000 P2 Q3
(b)	2	C	CN	A4	x	
(b)	1	A/B	CN	A4		

- ${ }^{1}$ ic: interpret composite func.
${ }^{2}$ pd: process
${ }^{3}$ ic: interpret composite func.
${ }^{4}$ pd: process
${ }^{5}$ pd: process
- 1 f $\left(\frac{3}{x}\right)$ stated or implied by \bullet^{2}
- $23-\frac{3}{x}$
- $p\left(\frac{3}{3-x}\right)$ stated or implied by \bullet^{4}
- $3-\frac{3}{3-x}$
.${ }^{5} x$
[SQA]

3. Given $f(x)=x^{2}+2 x-8$, express $f(x)$ in the form $(x+a)^{2}-b$.

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
	2	C	NC	A5	$(x+1)^{2}-9$	2001 P1 Q4

- 1 ss: e.g. start to complete square
- ${ }^{2}$ pd: complete process
- ${ }^{1}(x+1)^{2} \ldots$
- ${ }^{2}(x+1)^{2}-9$
or
-1 $a=1$
$\bullet^{2} b=9$
or
- $x^{2}+2 x-8 \equiv x^{2}+2 a x+a^{2}-b$
$\bullet^{2} a=1$ and $b=9$

4. (a) Express $f(x)=x^{2}-4 x+5$ in the form $f(x)=(x-a)^{2}+b$.
(b) On the same diagram sketch:
(i) the graph of $y=f(x)$;
(ii) the graph of $y=10-f(x)$.
(c) Find the range of values of x for which $10-f(x)$ is positive.

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
(a)	2	C	NC	A5	$a=2, b=1$	2002 P1 Q7
(b)	4	C	NC	A3	sketch	
(c)	1	C	NC	A16, A6	$-1<x<5$	

- 1 pd: process, e.g. completing the square
${ }^{2}$ pd: process, e.g. completing the square
- 3 ic: interpret minimum
${ }^{4}$ ic: interpret y-intercept
${ }^{5}$ ss: reflect in x-axis
- ${ }^{6}$ ss: translate parallel to y-axis
.7 ic: interpret graph
- ${ }^{1} a=2$
- ${ }^{2} b=1$
-3 any two from: parabola; min. t.p. $(2,1) ;(0,5)$
- 4 the remaining one from above list
\bullet reflecting in x-axis
${ }^{6}$ translating +10 units, parallel to y-axis
$\bullet^{7}(-1,5)$ i.e. $-1<x<5$

5. A sketch of the graph of $y=f(x)$ where $f(x)=x^{3}-6 x^{2}+9 x$ is shown below. The graph has a maximum at A and a minimum at $B(3,0)$.

(a) Find the coordinates of the turning point at A.
(b) Hence sketch the graph of $y=g(x)$ where $g(x)=f(x+2)+4$.

Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
(c) Write down the range of values of k for which $g(x)=k$ has 3 real roots.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
(a)	4	C	NC	C8	A(1,4)	2000 P1 Q2
(b)	2	C	NC	A3	sketch (translate 4 up, 2 left)	
(c)	1	A/B	NC	A2	$4<k<8$	

- ${ }^{1}$ ss: know to differentiate
- ${ }^{2}$ pd: differentiate correctly
- ${ }^{3}$ ss: know gradient $=0$
${ }^{4}$ pd: process
${ }^{5}$ ic: interpret transformation
${ }^{6}$ ic: interpret transformation
${ }^{-7}$ ic: interpret sketch
- $1 \frac{d y}{d x}=\ldots$
- $2 \frac{d y}{d x}=3 x^{2}-12 x+9$
-3 $3 x^{2}-12 x+9=0$
- ${ }^{4} \mathrm{~A}=(1,4)$
translate $f(x) 4$ units up, 2 units left
-5 sketch with coord. of $\mathrm{A}^{\prime}(-1,8)$
-6 sketch with coord. of $\mathrm{B}^{\prime}(1,4)$
- ${ }^{7} 4<k<8$ (accept $\left.4 \leq k \leq 8\right)$
[SQA]

6. The diagram shows the graphs of two quadratic functions $y=f(x)$ and $y=g(x)$. Both graphs have a minimum turning point at $(3,2)$.
Sketch the graph of $y=f^{\prime}(x)$ and on the same diagram sketch the graph of $y=g^{\prime}(x)$.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
	2	C	CN	A3	sketch	2001 P1 Q9

- ${ }^{1}$ ss: use $\frac{d}{d x}$ (quadratic) $=$ linear
${ }^{1}$ st. line for f^{\prime} though $(3,0), m_{f^{\prime}}>0$
- ${ }^{2}$ ic: interpret stationary point
${ }^{2}$ st. line for g^{\prime} through $(3,0)$, $m_{f^{\prime}}>m_{g^{\prime}}>0$

7. The graph of a function f intersects the x-axis at $(-a, 0)$ and $(e, 0)$ as shown.
There is a point of inflexion at $(0, b)$ and a maximum turning point at (c, d).
Sketch the graph of the derived function f^{\prime}.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
	3	C	CN	A3, C11	sketch	2002 P1 Q6

${ }^{1}$ ic: interpret stationary points
${ }^{2}{ }^{2}$ ic: interpret main body of f
${ }^{3}$ ic: interpret tails of f
${ }^{1}$ roots at 0 and c (accept a statement to this effect)
\bullet^{2} min. at LH root, max. between roots

- ${ }^{3}$ both 'tails' correct

8. The diagram shows part of the graph of the curve with equation $y=2 x^{3}-7 x^{2}+4 x+4$.
(a) Find the x-coordinate of the maximum turning point.
(b) Factorise $2 x^{3}-7 x^{2}+4 x+4$.
(c) State the coordinates of the point A and hence find the values of x for which $2 x^{3}-7 x^{2}+4 x+4<0$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(a)	5	C	NC	C8	$x=\frac{1}{3}$	2002 P2 Q3
(b)	3	C	NC	A21	$(x-2)(2 x+1)(x-2)$	
(c)	2	C	NC	A6	A $\left(-\frac{1}{2}, 0\right), x<-\frac{1}{2}$	

- ${ }^{1}$ ss: know to differentiate
$\bullet 2$ pd: differentiate
- ${ }^{3}$ ss: know to set derivative to zero
- ${ }^{4}$ pd: start solving process of equation
\bullet - pd: complete solving process
${ }^{6}$ ss: strategy for cubic, e.g. synth. division
${ }^{7}$ ic: extract quadratic factor
${ }^{8}$ pd: complete the cubic factorisation
- ${ }^{9}$ ic: interpret the factors
- ${ }^{10}$ ic: interpret the diagram
- ${ }^{1} f^{\prime}(x)=\ldots$
- $26 x^{2}-14 x+4$
- $6 x^{2}-14 x+4=0$
- ${ }^{4}(3 x-1)(x-2)$
${ }^{-5} x=\frac{1}{3}$

-6 | \cdots | $\left.\begin{array}{ccc}2 & -7 & 4 \\ & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ & \cdots & \cdots \\ \cdots & \cdots & 0 \\ \hline\end{array}\right)$ |
| :---: | :---: | :---: | :---: | :---: |

- $2 x^{2}-3 x-2$
- $\quad(x-2)(2 x+1)(x-2)$
- ${ }^{9} \mathrm{~A}\left(-\frac{1}{2}, 0\right)$
- ${ }^{10} x<-\frac{1}{2}$

9. Functions $f(x)=\sin x, g(x)=\cos x$ and $h(x)=x+\frac{\pi}{4}$ are defined on a suitable set of real numbers.
(a) Find expressions for:
(i) $f(h(x))$;
(ii) $g(h(x))$.
(b) (i) Show that $f(h(x))=\frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x$.
(ii) Find a similar expression for $g(h(x))$ and hence solve the equation $f(h(x))-g(h(x))=1$ for $0 \leq x \leq 2 \pi$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
(a)	2	C	NC	A4	(i) $\sin \left(x+\frac{\pi}{4}\right)$, $\cos \left(x+\frac{\pi}{4}\right)$	(ii)

- ${ }^{1}$ ic: interpret composite functions
${ }^{2}$ ic: interpret composite functions
- ${ }^{3}$ ss: expand $\sin \left(x+\frac{\pi}{4}\right)$
${ }^{-}{ }^{4}$ ic: interpret
${ }^{5}$ ic: substitute
${ }^{-6} \mathrm{pd}$: start solving process
${ }^{\bullet}{ }^{7}$ pd: process
- ${ }^{1} \sin \left(x+\frac{\pi}{4}\right)$
$\bullet^{2} \cos \left(x+\frac{\pi}{4}\right)$
$\bullet^{3} \sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4} \quad$ and complete
- ${ }^{4} g(h(x))=\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x$
- ${ }^{5}\left(\frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x\right)-\left(\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x\right)$
- $\frac{2}{\sqrt{2}} \sin x$
-7 $x=\frac{\pi}{4}, \frac{3 \pi}{4}$ accept only radians

10. Functions f and g are defined on suitable domains by $f(x)=\sin \left(x^{\circ}\right)$ and $g(x)=2 x$.
(a) Find expressions for:
(i) $f(g(x))$;
(ii) $g(f(x))$.
(b) Solve $2 f(g(x))=g(f(x))$ for $0 \leq x \leq 360$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
(a)	2	C	CN	A4	(i) $\sin \left(2 x^{\circ}\right),($ (ii $) 2 \sin \left(x^{\circ}\right)$	2002 P1 Q3
(b)	5	C	CN	T10	$0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}, 360^{\circ}$	

- ${ }^{1}$ ic: interpret $f(g(x))$
- ${ }^{1} \sin \left(2 x^{\circ}\right)$
${ }^{2}$ ic: interpret $g(f(x))$
- 3 s: equate for intersection
- $^{2} 2 \sin \left(x^{\circ}\right)$
- 4 ss: substitute for $\sin 2 x$
${ }^{5}$ pd: extract a common factor
${ }^{6}$ pd: solve a 'common factor'
- $2 \sin \left(2 x^{\circ}\right)=2 \sin \left(x^{\circ}\right)$
equation
${ }^{7}$ pd: solve a 'linear' equation
-4 appearance of $2 \sin \left(x^{\circ}\right) \cos \left(x^{\circ}\right)$
${ }^{5} 2 \sin \left(x^{\circ}\right)\left(2 \cos \left(x^{\circ}\right)-1\right)$
${ }^{6} \sin \left(x^{\circ}\right)=0$ and $0,180,360$
$\bullet^{7} \cos \left(x^{\circ}\right)=\frac{1}{2}$ and 60,300
or
${ }^{6} \sin \left(x^{\circ}\right)=0$ and $\cos \left(x^{\circ}\right)=\frac{1}{2}$
- 7 0,60,180,300,360

11. (a) Solve the equation $\sin 2 x^{\circ}-\cos x^{\circ}=0$ in the interval $0 \leq x \leq 180$.
(b) The diagram shows parts of two trigonometric graphs, $y=\sin 2 x^{\circ}$ and $y=\cos x^{\circ}$.
Use your solutions in (a) to write down the coordinates of the point P .

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
(a)	4	C	NC	T10	$30,90,150$	2001 P1 Q5
(b)	1	C	NC	T3	$\left(150,-\frac{\sqrt{3}}{2}\right)$	

- ${ }^{1}$ ss: use double angle formula
${ }^{2}$ pd: factorise
${ }^{3}$ pd: process
${ }^{4}$ pd: process
$\bullet{ }^{5}$ ic: interpret graph
- ${ }^{1} 2 \sin x^{\circ} \cos x^{\circ}$
- $2 \cos x^{\circ}\left(2 \sin x^{\circ}-1\right)$
- $\cos ^{\circ}=0, \sin x^{\circ}=\frac{1}{2}$
- 4 90,30,150
or
${ }^{3} \sin x^{\circ}=\frac{1}{2}$ and $x=30,150$
- $4 \cos x^{\circ}=0$ and $x=90$
- $5\left(150,-\frac{\sqrt{3}}{2}\right)$

12. The diagram shows the graph of a cosine function from 0 to π.
(a) State the equation of the graph.
(b) The line with equation $y=-\sqrt{3}$ intersects this graph at point A and B .
Find the coordinates of B.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
(a)	1	C	NC	T4	$y=2 \cos 2 x$	2002 P1 Q8
(b)	3	C	NC	T7	$\mathrm{B}\left(\frac{7 \pi}{12},-\sqrt{3}\right)$	

- ${ }^{1}$ ic: interpret graph
- ${ }^{2}$ ss: equate equal parts
${ }^{3}$ pd: solve linear trig equation in radians
${ }^{4}$ ic: interpret result
- ${ }^{1} 2 \cos 2 x$
- ${ }^{1} 2 \cos 2 x=-\sqrt{3}$
- $22 x=\frac{5 \pi}{6}, \frac{7 \pi}{6}$
- $3 x=\frac{7 \pi}{12}$

