Old Past Papers - Circles

1. Triangle $A B C$ has vertices $A(2,2)$, $B(12,2)$ and $C(8,6)$.
(a) Write down the equation of l_{1}, the perpendicular bisector of $A B$.
(b) Find the equation of l_{2}, the perpendicular bisector of AC.

(c) Find the point of intersection of lines l_{1} and l_{2}.
(d) Hence find the equation of the circle passing through A, B and C.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
(a)	1	C	CN	G3, G7	$x=7$	2001 P2 Q7
(b)	4	C	CN	G7	$3 x+2 y=23$	
(c)	1	C	CN	G8	$(7,1)$	
(d)	2	A/B	CN	G8, G9, G10	$(x-7)^{2}+(y-1)^{2}=26$	

- ${ }^{1}$ ic: state equation of a vertical line
${ }^{2}$ pd: process coord. of a midpoint
\bullet ss: find gradient of AC
${ }^{-}{ }^{4}$ ic: state gradient of perpendicular
$\cdot 5$ ic: state equation of straight line
- ${ }^{6}$ pd: find pt of intersection
${ }^{7}$ ss: use standard form of circle equ.
\bullet ic: find radius and complete
- $1 x=7$
- ${ }^{2}$ midpoint $=(5,4)$
-3 $m_{\mathrm{AC}}=\frac{2}{3}$
- ${ }^{4} m_{\perp}=-\frac{3}{2}$
- $5 y-4=-\frac{3}{2}(x-5)$
- $6 x=7, y=1$
${ }^{7}(x-7)^{2}+(y-1)^{2}$
- $\quad(x-7)^{2}+(y-1)^{2}=26$
or
$\bullet^{7} x^{2}+y^{2}-14 x-2 y+c=0$
$\bullet^{8} c=24$

2. (a) Find the equation of AB , the perpendicular bisector of the line joing the points $P(-3,1)$ and $\mathrm{Q}(1,9)$.
(b) C is the centre of a circle passing through P and Q . Given that QC is parallel to the y-axis, determine the equation of the circle.
(c) The tangents at P and Q intersect at T.

Write down

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
(a)	4	C	CN	G7	$x+2 y=9$	2000 P2 Q2
(b)	3	C	CN	G10	$(x-1)^{2}+(y-4)^{2}=25$	
(c)	2	C	CN	G11, G8	(i) $y=9,(i i) T(-9,9)$	

- ${ }^{1}$ ss: know to use midpoint
${ }^{-2}$ pd: process gradient of PQ
-3 ss: know how to find perp. gradient
- ${ }^{4}$ ic: state equ. of line
${ }^{\circ}$ ic: interpret "parallel to y-axis"
${ }^{-6}$ pd: process radius
${ }^{-7}$ ic: state equ. of circle
- ${ }^{8}$ ic: interpret diagram
- 9 ss: know to use equ. of $A B$
- ${ }^{1}$ midpoint $=(-1,5)$
- ${ }^{2} m_{\mathrm{PQ}}=\frac{9-1}{1-(-1)}$
- $m_{\perp}=-\frac{1}{2}$
- $4-5=-\frac{1}{2}(x-(-1))$
- ${ }^{5} y_{\mathrm{C}}=4$ stated or implied by \bullet^{7}
${ }^{6}$ radius $=5$ or equiv. stated or implied by \bullet^{7}
- ${ }^{7}(x-1)^{2}+(y-4)^{2}=25$
$\bullet 8=9$
- ${ }^{9} \mathrm{~T}=(-9,9)$

3. Circle P has equation $x^{2}+y^{2}-8 x-10 y+9=0$. Circle Q has centre $(-2,-1)$ and radius $2 \sqrt{2}$.
(a) (i) Show that the radius of circle P is $4 \sqrt{2}$.
(ii) Hence show that circles P and Q touch.
(b) Find the equation of the tangent to the circle Q at the point $(-4,1)$.
(c) The tangent in (b) intersects circle P in two points. Find the x-coordinates of the points of intersection, expressing you answers in the form $a \pm b \sqrt{3}$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
(a)	2	C	CN	G9	proof	2001 P1 Q11
(a)	2	A/B	CN	G14		
(b)	3	C	CN	G11	$y=x+5$	
(c)	3	C	CN	G12	$x=2 \pm 2 \sqrt{ } 3$	

${ }^{1}$ ic: interpret centre of circle (P)
\bullet^{2} ss: find radius of circle (P)

- ${ }^{3}$ ss: find sum of radii
${ }^{4}$ pd: compare with distance between centres
- ${ }^{5}$ ss: find gradient of radius
${ }^{6}$ ss: use $m_{1} m_{2}=-1$
\bullet ic: state equation of tangent
$\bullet 8$ ss: substitute linear into circle
- 9 pd : express in standard form
- ${ }^{10} \mathrm{pd}$: solve (quadratic) equation
- ${ }^{1} C_{P}=(4,5)$
${ }^{2} r_{\mathrm{P}}=\sqrt{16+25-9}=\sqrt{32}=4 \sqrt{2}$
$\bullet^{3} r_{\mathrm{P}}+r_{\mathrm{Q}}=4 \sqrt{2}+2 \sqrt{2}=6 \sqrt{2}$
- ${ }^{4} C_{P} C_{Q}=\sqrt{6^{2}+6^{2}}=6 \sqrt{2}$ and "so touch"
- ${ }^{5} m_{\mathrm{r}}=-1$
- ${ }^{6} m_{\mathrm{tgt}}=+1$
- $7 x-1=1(x+4)$
- $x^{2}+(x+5)^{2}-8 x-10(x+5)+9=0$
- ${ }^{9} 2 x^{2}-8 x-16=0$
- ${ }^{10} x=2 \pm 2 \sqrt{3}$

4. The point $\mathrm{P}(2,3)$ lies on the circle $(x+1)^{2}+(y-1)^{2}=13$. Find the equation of the tangent at P .

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	4	C	CN	G11	$2 y+3 x=12$	2002 P1 Q1

- ${ }^{1}$ ic: interpret centre from equ. of circle
${ }^{\bullet}$ ss: know to find gradient of radius
- 3 ss: know to find perp. gradient
${ }^{4}$ ic: state equation of tangent
- ${ }^{1} C=(-1,1)$
- ${ }^{2} m_{\text {rad }}=\frac{2}{3}$
- $m_{\mathrm{tgt}}=-\frac{3}{2}$
- $4 y-3=-\frac{3}{2}(x-2)$

5. For what range of values of k does the equation $x^{2}+y^{2}+4 k x-2 k y-k-2=0$ represent a circle?

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	5	A	NC	G9, A17	for all k	2000 P1 Q6

- ${ }^{1}$ ss: know to examine radius
- ${ }^{1} g=2 k, f=-k, c=-k-2$ stated or implied by \bullet^{2}
${ }^{2}$ pd: process
- ${ }^{2} r^{2}=5 k^{2}+k+2$
pd: process
${ }^{4}$ ic: interpret quadratic inequation
- ${ }^{3}($ real $r \Rightarrow) 5 k^{2}+k+2>0($ accept $\geq)$
\bullet ic: interpret quadratic inequation
${ }^{4}$ use discr. or complete sq. or diff.
${ }^{-5}$ true for all k

