Old Past Papers - Circles

- [SQA] 1. Triangle ABC has vertices A(2,2), B(12,2) and C(8,6).
 - (*a*) Write down the equation of *l*₁, the perpendicular bisector of AB.
 - (*b*) Find the equation of l_2 , the perpendicular bisector of AC.
 - (c) Find the point of intersection of lines l_1 and l_2 .
 - (*d*) Hence find the equation of the circle passing through A, B and C.

1

Part	Marks	Level	Calc.	Content	Answer	U2 OC4	
<i>(a)</i>	1	С	CN	G3, G7	x = 7	2001 P2 Q7	
(b)	4	С	CN	G7	3x + 2y = 23		
(C)	1	С	CN	G8	(7,1)		
(<i>d</i>)	2	A/B	CN	G8, G9, G10	$(x-7)^2 + (y-1)^2 = 26$		
•2 •3 •4 •5 •6 •7	pd: pro ss: finc ic: stat ic: stat pd: finc	cess coo l gradier e gradie e equati l pt of ir standar	rd. of a nt of AC ent of pe on of st ntersecti rd form	erpendicular raight line on of circle equ.	• ¹ $x = 7$ • ² midpoint = (5,4) • ³ $m_{AC} = \frac{2}{3}$ • ⁴ $m_{\perp} = -\frac{3}{2}$ • ⁵ $y - 4 = -\frac{3}{2}(x - 5)$ • ⁶ $x = 7, y = 1$ • ⁷ $(x - 7)^2 + (y - 1)^2$ • ⁸ $(x - 7)^2 + (y - 1)^2 = 26$ or		
					• ⁷ $x^2 + y^2 - 14x - 2y + c = $ • ⁸ $c = 24$	0	

Quest

- [SQA] 2. (*a*) Find the equation of AB, the perpendicular bisector of the line joing the points P(-3,1) and Q(1,9).
 - (*b*) C is the centre of a circle passing through P and Q. Given that QC is parallel to the *y*-axis, determine the equation of the circle.
 - (c) The tangents at P and Q intersect at T.

Write down

- (i) the equation of the tangent at Q
- (ii) the coordinates of T.

2

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
<i>(a)</i>	4	С	CN	G7	x + 2y = 9	2000 P2 Q2
<i>(b)</i>	3	С	CN	G10	$(x-1)^2 + (y-4)^2 = 25$	
(C)	2	С	CN	G11, G8	(i) $y = 9$, (ii) T(-9,9)	
•2 •3 •4 •5 •6 •7 •8	ic: stat	cess gra ow how t e equ. o erpret "p cess rad e equ. o erpret di	dient of to find p f line parallel ius f circle agram	PQ perp. gradient to y-axis"	•1 midpoint = $(-1,5)$ •2 $m_{PQ} = \frac{9-1}{1-(-1)}$ •3 $m_{\perp} = -\frac{1}{2}$ •4 $y - 5 = -\frac{1}{2}(x - (-1))$ •5 $y_{C} = 4$ stated or implied b •6 radius = 5 or equiv. stated or implied by •7 •7 $(x - 1)^{2} + (y - 4)^{2} = 25$ •8 $y = 9$ •9 $T = (-9,9)$	y ● ⁷

- [SQA] 3. Circle P has equation $x^2 + y^2 8x 10y + 9 = 0$. Circle Q has centre (-2, -1) and radius $2\sqrt{2}$.
 - (a) (i) Show that the radius of circle P is $4\sqrt{2}$.
 - (ii) Hence show that circles P and Q touch.
 - (b) Find the equation of the tangent to the circle Q at the point (-4, 1).
 - (*c*) The tangent in (*b*) intersects circle P in two points. Find the *x*-coordinates of the points of intersection, expressing you answers in the form $a \pm b\sqrt{3}$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4	
<i>(a)</i>	2	С	CN	G9	proof	2001 P1 Q11	
<i>(a)</i>	2	A/B	CN	G14			
<i>(b)</i>	3	С	CN	G11	y = x + 5		
(C)	3	С	CN	G12	$x = 2 \pm 2\sqrt{3}$		
 •¹ ic: interpret centre of circle (P) •² ss: find radius of circle (P) •³ ss: find sum of radii •⁴ pd: compare with distance between centres 					• ¹ $C_P = (4,5)$ • ² $r_P = \sqrt{16+25-9} = \sqrt{32} = 4\sqrt{2}$ • ³ $r_P + r_Q = 4\sqrt{2} + 2\sqrt{2} = 6\sqrt{2}$ • ⁴ $C_P C_Q = \sqrt{6^2 + 6^2} = 6\sqrt{2}$ and "so touch"		
•6	ss: find ss: use ic: stat	$m_1m_2 =$	-1		• ⁵ $m_{\rm r} = -1$ • ⁶ $m_{\rm tgt} = +1$ • ⁷ $y - 1 = 1(x + 4)$		
	ss: sub pd: exp pd: solv	ress in s	tandarc	l form	• ⁸ $x^{2} + (x+5)^{2} - 8x - 10(x+5) + 9 = 0$ • ⁹ $2x^{2} - 8x - 16 = 0$ • ¹⁰ $x = 2 \pm 2\sqrt{3}$		

[SQA] 4. The point P(2,3) lies on the circle $(x + 1)^2 + (y - 1)^2 = 13$. Find the equation of the tangent at P.

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	4	С	CN	G11	2y + 3x = 12	2002 P1 Q1
 4 C CN GII •¹ ic: interpret centre from equ. of circle •² ss: know to find gradient of radius •³ ss: know to find perp. gradient •⁴ ic: state equation of tangent 					• ¹ $C = (-1, 1)$ • ² $m_{rad} = \frac{2}{3}$ • ³ $m_{tgt} = -\frac{3}{2}$ • ⁴ $y - 3 = -\frac{3}{2}(x - 2)$	

4

3

3

4

Quest

5

[SQA] 5. For what range of values of k does the equation $x^2 + y^2 + 4kx - 2ky - k - 2 = 0$ represent a circle?

Part	Marks	Level	Calc.	Content	Answer	U2 OC4
	5	А	NC	G9, A17	for all <i>k</i>	2000 P1 Q6
•2 •3 •4		cess cess erpret qu	ıadratic	adius inequation inequation	 ¹ g = 2k, f = -k, c = stated or implied by •² ² r² = 5k² + k + 2 ³ (real r ⇒) 5k² + k + 2 ⁴ use discr. or complete ⁵ true for all k 	$2 > 0$ (accept \geq)

[END OF QUESTIONS]

